
 How to Design a Parallel Program
Mike Rogers, Sheikh Ghafoor, and Mark Boshart

Tennessee Tech

1 Introduction
Most computers sold today have more than one processor. A computer with more than one

processor can do more than one operation at a time, and doing more than one operation at a time

results in programs running faster. Unfortunately, a program written for a computer having only

one processor does not automatically run faster. The program must be written to use the

processors.

This chapter explains the concepts needed to write parallel programs that can run faster. In

particular, this chapter introduces the concept of threads, describes how to use them to write

parallel programs, and provides some detailed examples.

2 The Concept of Threads
The most common models for parallel programming make use of the concept of threads. To

understand threads, you must also understand the related concepts of process, race condition,

deadlock, shared resources, and parallel speedup. Following is a simple grocery store

illustration to help describe the concepts, followed by a more detailed description of

programming using threads.

2.1 Parallelism in the Grocery Store
Consider the following example of a grocery store that illustrates the concepts of threads and

processes. The grocery store (process) has many people inside that are shopping for items that

they need. Most of those people are not collaborating. For example, one shopper can be

shopping for items that they need for their evening meal, while another shopper can be shopping

for items that they need for their daughter’s birthday party. In this case, both shoppers are acting

independently of each other. However, a husband and wife team could decide to split up their

shopping list such that the husband searches for the meat items for the evening meal while the

wife searches for the pasta items for their evening meal. In this case the husband and wife team

are sharing the load of shopping. Note that they must agree on the workload, i.e. who does what.

The above illustration describes a number of concepts for threading. First, a process, which is

represented by the grocery store in the example above, is a set of data and instructions that is

given its own memory by the operating system, and is created any time that you execute a

program on your computer. Another way to describe a process is that it is an instance of a

running program. A process can contain any number of threads, which are illustrated as

customers, that act simultaneously. The threads are what execute the process’s code, just as the

customers walk the grocery store’s aisles. The threads can be acting independently or in concert.

If threads act in concert, then those threads must be programmed such that they collaborate. In

other words, the programming of the threads must break up the workload such that each thread

works on its part.

Consider what happens in the grocery store illustration if two customers reach for the same box

of spaghetti. This condition is called a race condition. If the customers do not have some way to

resolve the impasse, then disaster can occur. Perhaps the customers will get in a tug-of-war

match until the box of spaghetti bursts and makes a mess on the grocery store floor, or the

customers become deadlocked because they continue to fight over the single box of spaghetti and

never finish their shopping. However, the conflict could be resolved if the customers, upon

reaching the shelf that has the boxes of spaghetti, agree to solve their conflict by taking turns

such that one customer takes a box, and then the second customer takes a different box.

Similarly, threads accessing shared resources can lead to race conditions and deadlock. Shared

resources are resources that can possibly be accessed by two or more threads at the same time.

To avoid disaster in a program, such as the program crashing or giving wrong answers, the

threads must follow a synchronization protocol, such as taking turns.

Also note that, in the case of the husband and wife team, they were able to finish their shopping

faster. In fact, if they split their shopping list into two equal sized lists of items, then they would

be able to finish their shopping in about half the time, given that each item was equally easy to

find. If the team brought their children to help them shop, then they could divide the shopping

list further and save even more time. Similarly, the term parallel speedup describes the

performance increase that occurs when multiple threads computing simultaneously results in

making a computation take less time. However, note that speedup may not be perfect. For

example, if you have 10000 items on your grocery list and send 10000 people to gather the items

in the grocery store, the people may have to wait for others to leave a crowded grocery store aisle

before they can get to their items. In other words, according to Amdahl's law, speedup is limited

because the amount of parallelism is limited.

2.2 Programming Using Threads
Understanding how threads are implemented by your operating system is helpful for

understanding how to program using threads. Therefore, consider Figure 1a. A process is made

up of a program’s code, memory that stores the program’s data, and another type of memory

called the stack that helps the program keep track of local variables and function calls. The

curvy line in Figure 1a represents a single thread of control. The thread can access the process’s

data and use its stack to create and manipulate local variables and call procedures.

a) A process with one thread. b) A process with two threads

Figure 1: Processes and threads.

Figure 1b shows a process with two threads, represented by two curvy lines. Notice that both of

these threads can access the process’s data simultaneously. Such memory is called shared

memory and is a shared resource, as discussed in the grocery store example. Furthermore, each

thread has its own stack that is not shared so that it can have its own local variables and keep

track of its own function calls. The threads can run the same code or the two threads can run two

different functions at the same time. Furthermore, a process can have any number of threads,

where each thread executes program code and has its own local variables. So, programs can

create multiple threads, and all of those threads can run code and access the process’s data

simultaneously, which can result in faster computation!

The details of writing programs that use multiple threads to solve problems can vary according to

the programming language and threading library used. However, all languages and libraries

have similar concepts and follow similar approaches to thread programming. Consider Figure 2

that shows a single threaded process and a multithreaded process. A task is defined as a unit of

work that can be executed by a thread. A task is usually implemented as a function or code

block in a program. Normally, a program starts with a single thread of execution. Therefore, as

depicted in Figure 2a, the single master thread, usually given an identifier of 0, must executed

each tasks sequentially.

a) Task run sequentially by the master thread.

b) Task run in parallel by forking threads.

Figure 2: Parallel tasks.

However, some tasks can be executed simultaneously if the process had more than a single

thread. Multithreading libraries and thread capable programming languages allow the program to

do just that. For example, in Figure 2b the process starts with only the master thread. However,

tasks 1, 2, and 3 can be executed in parallel. Therefore, the master thread forks three threads that

each run their tasks in parallel. Note that the three tasks could run the same code or they could

run different code. What is important is that the threads are running the tasks simultaneously.

Once all threads are finished, the threads join at a synchronization point, often called a barrier.

Then the master thread continues. As the master thread continues to run the process code, if it

needs to execute more tasks in parallel, then it follows the same fork-join scheme.

A common computational problem is scalar-vector multiplication, and it is a good example to

demonstrate the fork-join threading model. Scalar vector multiplication requires multiplying

each element of a vector, which can be represented in most programming languages as an array,

by a scalar value. Following is a simple sequential algorithm for solving the scalar-vector

multiplications problem for a floating point scalar and an array of floats:

scalar_vector_multiply
 inputs:
 scalar: a floating point number
 vector: an array of floating point numbers
 outputs:
 none – the vector is modified in-place
 begin
 loop variable i from 0 to number of elements in vector
 set vectori to vectori * scalar
 end loop
 end

Unfortunately, the above algorithm will not run any faster if it is executed on a machine with

multiple processors that can run multiple threads. An algorithm that uses multiple threads must

divide the work between the threads, fork the threads, and then merge the results, if necessary.

In the scalar-vector multiplication example, dividing the work means determining which

elements of the vector will be computed by which threads. Typically, the best way to divide

work is to assign each thread an equal portion. For example, if the vector has 100 elements and

the process is to fork 4 threads, then the process’s code should assign each thread 25 elements.

Given that each thread will have a numeric identifier, i.e. the master thread will have id 0, the

next thread will have id 1, and so on, then the process’s code should assign the elements 0

through 24 to thread 0. The process should assign elements 25 through 49 to thread 1, elements

50 through 74 to thread 2, and elements 75 through 99 to thread 3. Given this scenario, the

algorithm for a parallel version of scalar_vector_multiply would be as follows.

parallel_scalar_vector_multiply()
 inputs:
 scalar: a floating point number
 vector: an array of floating point numbers
 outputs:
 none – the vector is modified in-place
 begin
 set chunk_size to 25
 with 4 threads do
 set thread_id to the current thread’s id
 set local variable vstart to thread_id * chunk_size
 set local variable vend to ((thread_id+1) * chunk_size) - 1
 loop variable i from vstart to vend

 set vectori to vectori * scalar
 end loop
 end with
 end

In the above algorithm, the with..do construct forks the threads, and the threads join after the

end with. You should trace through the above algorithm and convince yourself that it works.

In the case of the scalar-vector multiply algorithm, once the algorithm is finished, nothing more

needs to be done. However, for some algorithms, extra steps must be taken to merge the results

from each thread. For example, consider the algorithm below that finds the smallest value in a

vector using two threads.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 Parallel_find_smallest()
 inputs:
 vector: an array of floating point numbers
 vector_size: the number of elements in vector
 outputs:
 least: the smallest number in vector
 begin
 with 2 threads do
 set thread_id to the current thread’s id
 if thread_id is 0 then
 set local variable vstart to 0
 set local variable vend to vector_size / 2
 set smallest0 to vectorvstart
 else
 set local variable vstart to (vector_size / 2) + 1
 set local variable vend to vector_size – 1
 set smallest1 to vectorvstart

 end if
 loop i from vstart to vend
 if vectori is less than smallestthread_id then
 set smallestthread_id to vectori
 end if
 end loop
 end with
 set least to the minimum of smallest0 and smallest1
 end

By line 24, each thread has calculated the smallest value in its part and stored that value in the

smallest array at the index that corresponds the thread’s id. However, the smallest value in the

whole array must be the smaller of the two values in smallest0 and smallest1. Therefore, to make

the above algorithm complete, line 25 computes the minimum value of the two thread’s results.

Note that line 25 occurs after the with…do construct, which is after the threads join, and only the

master thread is active.

3 Thread Libraries
This chapter continues the topic of threads by showing how the concepts of threads are

implemented in actual programming code. This chapter describes both C++ with OpenMP and

Java’s ForkJoin framework and gives examples.

3.1 C/C++ and OpenMP
Any programming language that supports multithreading must support creating threads,

assigning them work, and synchronizing them. Many ways exist for the C and C++

programming to control threads. This section describes one of the easiest to use threading

libraries for C/C++ called OpenMP.

3.1.1 OpenMP Basics
OpenMP was designed so that programmers could put their efforts into designing their programs

instead of the complexities of parallel programming. Therefore, OpenMP can parallelize most

code by simply annotating the code with compiler directives. In C/C++, a compiler directive is a

line in the source code that starts with the pound sign (#) and the word pragma. The specific

compiler directive for OpenMP is as follows.

#pragma omp

Adding specific keywords at the end of the pragma determines the pragmas behavior. For

example, consider the following C++ hello world example.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

#include <iostream>

#include <string>

#include <sstream>

#include <omp.h>

int main(int argc, char *argv[]) {

 if (argc != 2) {

 std::cerr << "usage: " << argv[0] << " num_threads" << std::endl;

 exit(1);

 }

 int nthreads;

 std::stringstream ss(argv[1]);

 ss >> nthreads;

#pragma omp parallel num_threads(nthreads)

 std::cout << "Hello from thread "

 << omp_get_thread_num() << std::endl;

 return 0;

}

So, what does this code do? In short, it spawns two threads and each thread prints out a hello

message followed by its thread identifier. In detail, Lines 1 through 4 include some needed

headers. In particular, line 4 includes OpenMP definitions. Line 4 is needed to be able to call

the omp_get_thread_num() function found on line16. Lines 12 and 13 convert the string value

passed on the command line to an integer and store that number into the variable

num_threads. Then line 14 forks multiple threads, using the value in num_threads to

determine how many. The use of the pragma keyword parallel designates that the next line

of code is to be run by each thread in parallel. Lines 15 and 16 prints the string “Hello from

thread” followed by the threads identifying number that is returned from the

omp_get_thread_num() function. This identifying number is often called the thread’s rank

or id. Once the parallel code is executed, the threads join at what is called in implicit barrier, and

only the master thread executes line 18.

What if the thread should execute more than one line of code, i.e. a code block, after the pragma?

Surrounding the code with curly braces create a code block that is executed in parallel, as in the

following.

1

2

3

4

5

6

#pragma omp parallel num_threads(threads)

{

 std::cout << "Hello from thread ";

 std::cout << omp_get_thread_num()

 << std::end;

}

3.1.2 Running and executing the code
Entering the following command in a terminal (Unix) or a command prompt (Windows) will

compile the above program using the Gnu C++ compiler.

g++ -Wall –fopenmp –o hello hello.cpp

The –fopenmp flag must be included to be able to use OpenMP. Then, the program can be run

by entering the following command.

./hello 2

The “./” in front of the program name should be removed to run the program at the Windows

command prompt. The following is example output of the executed program.

$./hello 2
Hello from thread Hello from thread 01

Why is the program output garbled? It is garbled because threads in the program are sharing the

screen. Thus, a race condition exists because each thread is contending for the shared resource.

The pragma critical will fix the race condition by requiring the threads to take turns running

the code in the critical section, as in the following C++ code snippet.

#pragma omp parallel num_threads(nthreads)

 {

 std::cout << "This line is a race condition " << std::endl;

#pragma omp critical

 std::cout << "But this line is not: " << omp_get_thread_num() <<

std::endl;

 }

The following is an example of output when executing a program that has the above code in the

main().

This line is a race condition This line is a race condition

But this line is not: 1
But this line is not: 0

3.1.3 A Practical Example
A more practical, but still simple, example is parallelizing the function to find the smallest value

in an array. The program code below is a first attempt.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <iostream>

#include <omp.h>

float parallel_find_smallest(float vector[], int size);

int main() {

 float vector[17] = {1,9,2.3,4,3,6,5,8,7,9,12.2,65,24,

 -20.4,9,46,123};

 std::cout << "Smallest is: " << parallel_find_smallest(vector, 17)

 << std::endl;

 return 0;

}

// The function below only works for two threads

float parallel_find_smallest(float vector[], int size) {

 float smallest[2];

 int vstart[2];

 int vend[2];

#pragma omp parallel num_threads(2)

 {

 int id = omp_get_thread_num();

 if (id == 0) {

 vstart[0] = 0;

 vend[0] = size/2;

 } else if (id == 1) {

 vstart[1] = size/2;

28

29

30

31

32

33

34

35

36

37

38

39

 vend[1] = size-1;

 }

 int i = 0;

 smallest[id] = vector[vstart[id]];

 for (i = vstart[id] + 1; i <= vend[id]; i++) {

 if (vector[i] < smallest[id]) {

 smallest[id] = vector[i];

 }

 }

 }

 return std::min(smallest[0], smallest[1]);

}

This code only forks two threads to find the smallest number in the array. Each thread examines

each element of its part of the array and keep track of the smallest element in its part. Then, the

master thread examines the value from each thread and returns the smallest. In detail, lines 23

through 29 loads an array called vstart with the starting indexes for each thread and an array

called vend with the ending indexes of the array for each thread. Lines 32 through 36 executes a

loop over the elements for a particular thread’s part. Line 38 then returns the smallest value

found by the two threads.

Although the above example works and is a good example for how you can partition the array so

that the threads can process the array in parallel, OpenMP provides a much simpler way to write

the parallel_find_smallest() function. The simpler method is shown in the following

example.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

float parallel_find_smallest(float vector[], int size) {

 float least;

 int i = 0;

 least = vector[0];

#pragma omp parallel for reduction(min:least)

 for (i = 0; i < size; i++) {

 if (vector[i] < least) {

 least = vector[i];

 }

 }

 return least;

}

OpenMP handles both the partitioning of the array and the combining of the thread’s results

automatically in this version. Thus, this version is easier to write, smaller, and more readable.

Line 17 uses the OpenMP parallel for pragma. When the compiler sees this pragma, it

assigns each thread an approximately equal number of iterations of the loop and computes the

corresponding start and end values for the loop variable. Additionally, the reduction pragma

combines the resulting values from the threads stored in the least variable (each thread uses a

thread local variable), using the operation specified, which is the min operation.

3.2 Java Threads
The Java programming language, like C++, also support using multiple threads. Fortunately,

Java's ForkJoin Framework handles most of the complexity for the programmer.

3.2.1 Java Parallel Programming: The ForkJoin Framework
The ForkJoin Framework is part of Java 8's standard libraries and helps you take advantage of

multiple processors to improve the performance of your application. Tasks are distributed by the

framework to worker "threads". The ForkJoin Framework uses a work-stealing algorithm.

Worker threads that complete their assigned tasks can steal tasks from other threads that are still

busy.

ForkJoin is a framework that implements an inversion of control. In other words, the

programmer’s code does not call parallel tasks directly. The framework calls the parallel tasks.

Therefore, the programmer must structure the tasks according to the rules of the framework. The

ForkJoin framework is designed for work that can be decomposed into smaller tasks recursively.

Therefore, code should adhere to the algorithm below1.

if the problem size is “small”
 do the work right here
else
 break the problem into two or more smaller pieces (subtasks)
 start each piece in its own thread (fork)
 wait for the results (join)

The framework determines what resources (i.e. processors) are available and uses them as

effectively as possible to complete the subtasks in parallel. Starting a task in its own thread is a

fork, and waiting until the thread to finish its task is a join.

The first part of the above conditional is extremely important to get good performance from the

ForkJoin framework. Creating and starting threads can be inefficient. A substantial amount of

work is performed behind the scenes by the framework. Thus, it is important for the programmer

to decide if a problem size is large enough to justify forking a new thread. This important

decision may require some experimentation by the programmer. The conditional in the

algorithm above must be carefully constructed to ensure that the program only forks new threads

when it is advantageous to do so.

1

 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Not every problem can take advantage of multiple processors. In particular, each task must be

independent of any of the other tasks results. In addition, how the framework will assign threads

to the limited resources and which of the threads will finish first cannot be predicted. Thus,

relying on predicting the order that the threads will complete can introduce race conditions that

give incorrect results.

ForkJoin Framework Programming
In order to hook into the ForkJoin Framework (so that the framework can call the parallel tasks),

the problem must be defined in a class that extends either RecursiveTask or RecursiveAction.

The two are very similar except that for a RecursiveTask, each thread returns a result (object),

but, for RecursiveAction, the threads do not. Both classes have a compute() method that the

framework expects your subclass to override. The compute() method returns a value if you are

extending RecursiveTask, and is void if you are extending RecursiveAction. The pseudocode in

the previous section would be implemented in the compute() method for the specific problem.

The compute() method takes no parameters. Most likely, the recursive, serial version of the

problem needs several parameters. The subclass (extending either RecursiveTask or

RecursiveAction) can store the “parameters” that it needs as instance variables. Thus, starting a

new thread will involve using new and passing the values that the thread needs to the constructor.

To start the new thread, the code should call the fork() method on the object just created. The

subclass inherits functionality by extending RecursiveTask or RecursiveAction. Therefore, the

fork() method calls the overridden compute() method on the task just started that, typically,

starts more threads.

After forking all of the threads, the program must wait for the results. The code should call the

join() method on the object that was forked earlier. This call to join() blocks (waits at that

point in the code) until that specific thread finishes. The join() method will return an object if

the problem extended RecursiveTask; otherwise, join() returns nothing (it has a void return

value).

Blocking may at first seem inefficient. For example, suppose you fork five threads and your first

call to join is on the first one you forked, but it is last to finish (remember you cannot predict the

order that the threads will finish). Fortunately, the framework implements work stealing. Any

threads that finish early will steal work from those that have not yet finished. Thus, the other

four threads that finished before the first thread stay busy by taking work from the first thread.

Therefore, Java’s implementation of work stealing makes parallelizing code much simpler

because the programmer does not have to ensure that each thread has approximately the same

amount of work.

It is important to fork all threads before joining. Because a join blocks, forking a thread for a

task and then immediately joining it before forking any other threads results in a serial solution

to the problem. The code must fork several threads before joining in order for the framework to

perform all of its optimizations, including work stealing.

Finally, the program must have a pool of threads available. The ForkJoin Framework makes this

easy. The ForkJoin Framework has a singleton object, which the code can get by calling

ForkJoinPool.commonPool(), that contains a thread pool that can be utilized by any task

(RecursiveTask or RecursiveAction). This thread pool reduces the overhead of forking new

threads. Passing the RecursiveTask or RecursiveAction that represents the entire problem (i.e.

with instance variables corresponding to the entire task to be completed) to the thread pool

object's invoke() method will start the program up in parallel. The example described next uses

the thread pool aproach.

ForkJoin Framework Complete Example: Parallel Sum
As a simple, yet illustrative, example, consider a large array containing integers whose sum is

required. The first step is to write a serial, recursive version of the algorithm, shown here.

public class SumRecSerialOne

{

 public static long sumRec(Integer[] array, int first, int last)

 {

 if (last == first)

 {return array[first];}

 int mid = first + (last - first)/2;

 long left_sum = sumRec(array, first, mid);

 long right_sum = sumRec(array, mid+1, last);

 return left_sum + right_sum;

 }

}

The user calls SumRecSerialOne.sumRec(), providing the array and the range of indices to sum

(most likely first is zero and last is array.length - 1). The problem is broken down into a

left subtask and a right subtask, and a recursive call is made to solve each subtask. Note that this

problem could have been broken into more than two pieces. The results from both subtasks are

added together, and this result is returned.

Consider a second version of the same algorithm, below, where the parameters required by the

method above become instance variables for a SumRecSerialTwo object.

public class SumRecSerialTwo

{

 private Integer[] array;

 private int first;

 private int last;

 public SumRecSerialTwo(Integer[] array, int first, int last)

 {

 this.array = array;

 this.first = first;

 this.last = last;

 }

 public long sumRec()

 {

 if (last == first)

 {return array[first];}

 int mid = first + (last - first)/2;

 SumRecSerialTwo left = new SumRecSerialTwo(array, first, mid);

 long left_sum = left.sumRec();

 SumRecSerialTwo right = new SumRecSerialTwo(array, mid+1, last);

 long right_sum = right.sumRec();

 return left_sum + right_sum;

 }

}

The problem with this version is that a lot of new objects are created. Consider a third version,

below, that combines the two previous versions.

public class SumRecSerialThree

{

 private Integer[] array;

 private int first;

 private int last;

 public SumRecSerialThree(Integer[] array, int first, int last)

 {

 this.array = array;

 this.first = first;

 this.last = last;

 }

 public long compute()

 {

 int num_items = last - first + 1;

 if (num_items < SOME_NUMBER)

 {return sumRec(array, first, last);}

 else

 {return sumRec();}

 }

 public long sumRec()

 {

 int mid = first + (last - first)/2;

 SumRecSerialThree left = new SumRecSerialThree(array, first, mid);

 long left_sum = left.compute();

 SumRecSerialThree right = new SumRecSerialThree(array, mid+1, last);

 long right_sum = right.compute();

 return left_sum + right_sum;

 }

 public static long sumRec(Integer[] array, int first, int last)

 {

 if (last == first)

 {return array[first];}

 int mid = first + (last - first)/2;

 long left_sum = sumRec(array, first, mid);

 long right_sum = sumRec(array, mid+1, last);

 return left_sum + right_sum;

 }

}

This third version introduces a compute() method which is a dispatch method. If the problem

size is "small", this dispatcher simply call the method that does not create new objects.

Otherwise, compute() calls the method that creates new objects.

This serial version of the array summation program will be easy to convert to a parallel version.

The following code applies the ForkJoin Framework requirements for our summation program:

import java.util.concurrent.RecursiveTask;

public class SumRecParallel extends RecursiveTask<Long>

{

 private Integer[] array;

 private int first;

 private int last;

 public SumRecParallel(Integer[] array, int first, int last)

 {

 this.array = array;

 this.first = first;

 this.last = last;

 }

 public Long compute()

 {

 int num_items = last - first + 1;

 if (num_items < SOME_NUMBER)

 {return sumRec(array, first, last);}

 else

 {return sumRec();}

 }

 public long sumRec()

 {

 int mid = first + (last - first)/2;

 SumRecParallel left = new SumRecParallel(array, first, mid);

 left.fork();

 SumRecParallel right = new SumRecParallel(array, mid+1, last);

 right.fork();

 long left_sum = left.join();

 long right_sum = right.join();

 return left_sum + right_sum;

 }

 public static long sumRec(Integer[] array, int first, int last)

 {

 if (last == first)

 {return array[first];}

 int mid = first + (last - first)/2;

 long left_sum = sumRec(array, first, mid);

 long right_sum = sumRec(array, mid+1, last);

 return left_sum + right_sum;

 }

}

Because our serial recursive methods returned a long, the code extends RecursiveTask<Long>.

As in the serial version, the compute()method simply dispatches based on the current problem

size. If the problem size is "small", compute() calls the sumRec() method that doesn't start any

new threads. Finally, the sumRec() method without parameters, forks all of the new threads and

then joins them.

Lastly, the main() method implements the pool of threads as shown in the following code

snippet:

import java.util.concurrent.ForkJoinPool;

 ...

 SumRecParallel sum_rec_parallel =

 new SumRecParallel(array, 0, array.length - 1);

 long sum_parallel =

 ForkJoinPool.commonPool().invoke(sum_rec_parallel);

The finished program has a SumRecParallel object corresponding to the entire problem to be

solved. The program passes this object to the invoke method of the ForkJoinPool.commonPool()

object, and the parallelized array summation problem is complete!

4 Examples
This section contains various examples for both CS1 and CS2. Each example is written in a

laboratory format so that the reader can completely implement the example. Therefore, each

example lists the skills that the reader will learn once the reader completes the example, a prolog

and review of prerequisite material in CS1 or CS2 needed for the example, a description of the

problem that the example is attempting to solve, the methodology for parallelizing the example,

and, finally, a description of the parallelized implementation.

4.1 Parallel Sum (CS1) - Summing numbers in parallel using C++ and
OpenMP

Skills you will learn:

• Summing numbers in parallel

• Parallel Processing using OpenMP

Prolog and Review
For this example, you should review your CS1 course instruction on single dimension arrays and

iterating over single dimension arrays. In particular, unlike scalar variables, such as variables of

type int, double, and char, array variables can hold more than one value. Consider the following

variable declarations.

1

2

int i = 5;

int numbers[3] = {10, 20, 30};

The variable declaration on line 1 of the above code declares a variable called i that holds the

number 5, and that variable can only hold one number. However, the numbers variable declared

at line 2 can hold 3 integers, and is initialized to hold the integers 10, 20, and 30. Accessing the

integers is as simple as indicating the correct index. In C++, arrays are zero based, so the first

item in the array always starts as index 0. So, in the above example, numbers[0] holds the

integer 10, numbers[1] holds the integer 20, and number[2] holds the integer 30.

Once you have item stored in an array, you can iterate over those items using a simple loop

structure and indexing into the array using the loop variable. Consider the following code:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

#include <iostream>

const int NSIZE = 10;

void gen_numbers(float numbers[], int how_many);

float gen_rand(int min, int max);

int main() {

 float numbers[100];

 gen_numbers(numbers, NSIZE);

 std::cout << "Generated numbers are: " << std::endl;

 for (int i = 0; i < NSIZE; i++) {

 std::cout << numbers[i] << " " << std::endl;

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 }

 return 0;

}

void gen_numbers(float numbers[], int how_many) {

 for (int i = 0; i < how_many; i++) {

 numbers[i] = gen_rand(0, 10);

 }

}

float gen_rand(int min, int max) {

 return (min + static_cast <float> (rand()) /

 (static_cast <float> (RAND_MAX/(max-min))));

}

The above program defines a function called gen_numbers(). The gen_numbers() function

generates an array of floating point numbers by using a for loop to place the random float,

generated by calling gen_rand(), into the array. The for loop uses the loop variable i to index

into the numbers array.

Problem Description
For this example, you will be writing a program to sum numbers stored in an array. Summing

numbers is straightforward. Consider Figure 3 below. All that you need to do is use a loop that

indexes into the array using the loop variable. You will also need an accumulator variable. The

accumulator variable will hold the running sum for each iteration. Once all iterations are

finished, the accumulator variable will hold the total sum.

array: 5.0 10.3 8.7 5.0 52.9 18.0 13.0 7.3 82.7 68.2

Loop step Index array[index] Accumulator (sum)

initialize 0 ---- 0

first 0 5.0 0 + 5.0 = (5.0)

second 1 10.3 5.0 + 10.3 = 15.3

third 2 8.7 15.3 + 8.7 = 24.0

fourth 3 5.0 24.0 + 5.0 = 29.0

fifth 4 52.9 29.0 + 52.9 = 81.9

sixth 5 18.0 76.9+ 18.0 = 99.9

seventh 6 13.0 94.9 + 13.0 = 112.9

eighth 7 7.3 107.9 + 7.3 = 120.2

ninth 8 82.7 115.2 + 82.7 = 202.9

Tenth 9 68.2 197.9 + 68.2 = 271.1

Figure 3 Summing integers in an array.

Convince yourself that the table is correct. Can you create an algorithm that does what the table

depicts?

Methodology
You will use domain decomposition, also often called data decomposition, to sum the array of

numbers in parallel. Domain decomposition requires dividing the array into equal parts and

assigning each part to a thread. Consider the simple example in Figure 4. The figure depicts

three processors each executing a thread, including a processor executing the master thread. The

computation occurs in two phases. First, the work is divided equally among the three

processors. In this case, each processor’s thread sums four numbers in the array. The master

thread on processor 1 sums all elements starting at index 0 and ending at index 3, the second

thread on processor 2 sums all elements starting at index 4 and ending at index 7, and the third

thread on processor 3 sums all elements starting at index 8 and ending at index 11.

The second phase occurs after all of the threads are finished with the first phase. In this phase,

the master adds all of the sums, stored in the variables accum1, accum2, and accum3 in the

figure, to compute a final total.

Figure 4: Three processors computing the sum in parallel.

Implementation
For this example, you will be implementing the code to sum numbers in serial and then in

parallel.

Tools

You will need to use the following tools to complete your assignment:

• An editor.

• A C++ compiler that is OpenMP capable (such as the gnu C++ compiler).

Generating Lots of Random Floating Point Numbers

You need lots of numbers to store in the array so that you can sort them. Normally, you would

have some important data, perhaps stored in a file or database, that you need to sort. However,

for this lab, you will generate some data with which to work. The section Prolog and Review

included some functions that generate floating point numbers. You can use those functions to

complete this example (gen_numbers() and gen_rand()).

Summing the numbers

Following is an algorithm that sums an array of numbers:

sum()
 inputs:
 array - the array of numbers
 num_elements - the number of elements in the array
 returns:
 sum - the sum of all the numbers in the array

 begin
 set sum to 0
 loop index from 0 to num_elements
 set sum to sum + the number in the array at position index
 end loop
 return sum
 end

Implement this algorithm as a C++ function and then write a main() that allocates an array of

1000000000 floating point numbers. If you allocate your array statically, you will need to make

the array a global variable because an array that large may be bigger that the maximum size of

the program’s stack for your particular operating system. Call the gen_numbers() function to

generate numbers and put them into the array. Finally, in main(), call the sum() function to

sum the numbers, and then print the result. Put all of you code into a file

called sum_serial.cpp. Compile it and run it to make sure it works.

Summing in Parallel
Can you make the serial version faster? You can make it a bit faster by doing both the

generating of the floating point numbers and the summing of the floating point numbers in

parallel.

Copy the sum_serial.cpp file to a file named sum_parallel.cpp. Now, modify the new file to

make a parallel version. The Methodology section above showed how the array should be

decomposed for each processor in the system to compute a part of the array, and thus compute

the parts in parallel. Fortunately, OpenMP will take care of doing all of the parllelization. All

you need to do is annotate your C++ code with the proper compiler pragmas.

First, parallelize the number generation code. In the gen_numbers() function, add a line before

the for loop. The line should be the following.

#pragma omp parallel for

Yes, that's it. Now the for loop has been properly parallelized.

Now, parallelize your sum() function. You can parallelize the for loop in the sum() function

just as you did the for loop in the gen_numbers() function. However, you will not get the

correct answer. Review the diagram in Figure 4 of the Methodology section. Each processor

must have its own accumulator, and then the master processor must sum the individual

accumulators together to get a final total. Combining the results of the computations is called

a reduction is parallel programming. Fortunately, OpenMP will handle this operation for you as

well. You just need to tell OpenMP what variable to reduce and what operation needs to be

applied. Therefore, add the following line to your sum function directly before the for loop.

#pragma omp parallel for reduction(+:accum)

Note that the above line of code is valid if you named your accumulator variable accum. If you

named your variable something else, which you probably did, then change the line to use your

variable name instead of accum. Compile your code and run it to make sure it works.

So, What's the Difference?

To see how your code with the added OpenMP code makes a difference, you can add the

following code before you call gen_numbers() in your main() function in both your serial and

parallel version.

// Note that the following code works for g++ on Linux, Mac OS, and Windows

(using MinGW)

struct timeval tv1;

struct timeval tv2;

gettimeofday(&tv1, NULL);

Next, add the following code immediately after your call the sum() function in main() for both

the serial and parallel version:

gettimeofday(&tv2, NULL);

std::cout << "Total time: " << (double) (tv2.tv_usec - tv1.tv_usec) /

1000000 +

 (double) (tv2.tv_sec - tv1.tv_sec) << std::endl;

Run your code for both the serial version and the parallel version and compare the times. Try

using larger images until you see speedup for the parallel version.

4.2 Image Processing (CS1) - Gray-scaling and Flipping an Image Using
C++ and OpenMP

Skills you will learn

• Loading images into arrays

• Manipulating images

• Parallel Processing using OpenMP

Prolog and Review
For this example, you should review your course instruction on arrays, structures, and arrays of

structures. Unlike scalar variable, such as variables of type int, double, and char, array variable

can hold more than one value. In addition, you are not limited to storing scalar values, such as

integers, into arrays. You can also declare arrays that hold structures. Recall that a structure is a

data type that can hold a set of specified variables. For example, if you want to create a new data

type that holds a person's name, age, and salary, you could declare that data type as follows.

1

2

3

4

5

struct person_t {

 char name[30];

 int age;

 float salary;

};

Then, creating a variable of that type is as simple as the following.

1

2

person_t joe = {"Joe Schmoe", 22, 20345};

std::cout << joe.name << "'s age is " << joe.age << std::endl;

Notice that after the variable joe is assigned a name, age, and salary, the above code accesses

joe's name and age using dot notation. Creating and accessing arrays of structures simply

combines array syntax with structure syntax. Consider the following.

1

2

3

4

person_t people[2] = { {"Joe Schmoe", 22, 20345},

 {"Jane Doe", 23, 45323} };

std::cout << people[0].name << "'s age is " << people[0].age << std::end;

std::cout << people[1].name << "'s age is " << people[1].age << std::endl;

As you can see, the above code declares an array that can hold two structures of type

person_t. The array is initialized with the name, age, and salary of each of the two

people. Then, at line 3, the code prints the name and age of the person_t at index 0 of the

array. Line 4 then prints the name and age of the person_t at index 1 of the array.

Problem Description
For this example, you will be writing program to manipulate images. You will write a serial

version of the program and time it. Then you will write a parallel version of the program, time it,

and then compare the speed of the two programs.

The two image processing techniques that you will implement are grey-scaling and flipping an

image. Figure 5 shows examples of an images that has been gray-scaled, flipped, and then both

gray-scaled and flipped.

Images are represented as pixels. You can think of a pixel and an individual color "dot" on your

monitor screen. The color of the pixel is represented as a mixture of intensities of the colors red,

green, and blue. Each intensity is represented as an 8-bit number in the ranging from 0 to

255. For example, the values (0,0,0) represents the color black, the values (255,0,0) represent

the color red, and the values (255,255,0) represent the color yellow. We call these intensities

RGB values (for red, green, and blue).

Gray-scaling an image represented as a series of RGB values is easy. Different methods exist,

but an effective method is called the luminosity method. Given the ith pixel, you gray-scale that

pixel with the following formula:

gray_value[i]= 0.21 * pixel[i].red + 0.72 * pixel[i].green + 0.07 * pixel[i].blue

a) Color image b) Gray-scaled image

c) Flipped image d) Gray-scaled and flipped image

Figure 5: Flipping and Gray-scaling an image.

Then, for each i, set the red, green, and blue component of pixel[i] to gray_value[i] to gray-scale

the image.

Flipping the image is also easy. Flip an image by flipping the 1st pixel with the last pixel, the 2nd

pixel with the next-to-last pixel, the 3rd pixel with the second-to-last pixel, and so on.

Methodology
Given the overview of the gray-scale and flipping algorithms above, how do you gray-scale and

flip an image in parallel? Consider the representation of an image in Figure 6.

An image has both a height and a width. The array of pixels shown is arranged in rows, where

each row is a line of pixels that would appear across the screen. The size of each line of pixels is

equal to the image's width, and the number of lines is equal to the images height.

When writing a parallel application, you first must determine how to divide the problem among

the available processors. Dividing the problem requires determining 1) how much of the

problem each processor should compute, and 2) determining where, in the input data, the

processor should begin and end its computations. In general, when dividing the rows among

processors, you should divide the work equally. So, if the image consists of n rows, and there

are p processors available, then each processor should get roughly n/p rows.

p[0] p[1] p[2] p[3]

}
Processor 1

p[4] p[5] p[6] p[7]

p[8] p[9] p[10] p[11]

}
Processor 2 p[12] p[13] p[14] p[15]

p[16] p[17] p[18] p[19]

}
Processor 3 p[20] p[21] [p22] p[23]

p[24] p[25] p[26] p[27]

}
Processor 4 p[28] p[29] p[30] p[31]

Figure 6: Processing an image in parallel.

A natural division for an image is to divide the image into chunks where each chunk consists of

number of sequential rows of pixels. Then you assign each chunk of rows to a processor. So, in

the example above, given four processors, each processor is responsible for two rows. Processor

1 would work on the 1st two rows (those rows in yellow) starting at index 0 and finishing with

index 7, processor 2 would work on the third and fourth rows (those rows colored green) starting

at index 8 and finishing at index 15, and so on.

Implementation
First, you will be implementing functions to read, write and gray-scale image files. You will

then modify your code to that it processes the image files in parallel, thus speeding up the

grayscale function.

Tools

You will need to use the following tools to complete your assignment:

• An editor.

• A C++ compiler that is OpenMP capable (such as the gnu C++ compiler).

• Some image files with which to work. The following image files are available

online: ttu.ppm2 ttu_tile.ppm3

• A program that can display PPM image files (for example, a browser).

Reading and Writing a PPM File

You will be reading and writing one of the simplest graphic file formats. The format is the

Netpbm color image format, also known as the PPM format.

Reading the header

2 http://www.csc.tntech.edu/~mrogers/2100/ttu.ppm
3 http://www.csc.tntech.edu/~mrogers/2100/ttu_tile.ppm

http://www.csc.tntech.edu/~mrogers/2100/ttu.ppm
http://www.csc.tntech.edu/~mrogers/2100/ttu_tile.ppm

A PPM file consists of a header describing the file type, the image width, the image height, and

the maximum color value per RGB component. The header is formatted as in the following table:

Description Type Size Value

Magic Number that identifies the

file format

Characters 2 "P6"

Whitespace Characters Variable space, tab, CR, or LF

Width Characters Variable Numbers in character

form

Whitespace Characters Variable space, tab, CR, or LF

Height Characters Variable Numbers in character

form

Whitespace Characters Variable space, tab, CR, or LF

Max color value Characters Variable Numbers in character

form

A single Whitespace Characters Variable space, tab, CR, or LF

(usually LF)

Now that you know the header format, you can write a function that can read the header of a

PPM image. The prototype for the function should be as follows:

void PPM_read_header(std::ifstream &inp, PPM_header &ppm_header);

The PPM structure should be as follows.

struct PPM_header {

 int width;

 int height;

 int max_color;

};

Note that the file should be opened for reading and passed to PPM_read_header() as a

ifstream object. To make reading the header simple, use the input stream operator

(operator>>) to read the Magic Number, Width, Height, and Max color value. Make sure that

you check the Magic Number and throw a std::runtime_error if the signature does not

match. You should read the last single whitespace character of the header using

ifstream::read() instead of the input stream operator, as the stream operator will skip over the

whitespace and soak up the next character.

Once you have written the function, write a main() driver that calls the function on the ttu.ppm

image and prints out the images width, height, and max color value. For example, consider the

following invocation:

$./ppm_lab ttu.ppm

Width: 184, Height: 140, Max color: 255

Reading the image

Next, you will write a function that reads the image data. For the purposes of this lab, you will

only be responsible for reading files that have a Max color value of 255. In other words, an

image has one byte per RGB component. You should create a structure that represent a

pixel. The structure should be as follows:

struct RGB_8 {

 uint8_t r;

 uint8_t g;

 uint8_t b;

} __attribute__((packed));

Note that the attribute added to the end of the structure is to ensure that the compiler does not

pad the structure. In other words, the red, green, and blue values must be formatted exactly as

they appear in the structure.

The prototype for your image reading function is as follows:

void PPM_read_rgb_8(std::ifstream &inp, int width, int height, RGB_8 *img);

This function should be called immediately after reading the header. Therefore, the file pointer

of the ifstream object will be in the correct position to begin reading the image data. Note that

the width and height parameters are obtained from the header that was read by the

PPM_read_header() function.

This function is actually very easy to write. The body of the function should call the

inp.read() function, passing the img array and the number of bytes to read. How do you know

how many bytes to read? The number of bytes is the size of an RGB_8 times the width times the

height of the image.

Next, modify your main() to read the image. Before you call your PPM_read_header()

function, you will need to allocate an array to hold the image. To do so, declare a pointer to an

RGB_8, and use the new operator to allocate it, like so:

RGB_8 *image = new RGB_8[header.width*header.height];

Writing the image

Writing the image is as simple as reading the image. Create a function that has the following

prototype:

void PPM_write_header_8(std::ofstream &outp, int width, int height);

Complete the function so that it writes the image header to a file. Note that the format must

match the format described in the above Reading the Header section. You will only need the

output stream operator (operator>>) to write the header data.

Finally, you can write the function that saves the image data. The prototype for that function is

as follows:

void PPM_write_rgb_8(std::ofstream &outp, int width, int height, RGB_8 *img);

Note that this function is as easy as writing the function that reads the image data. However, it

should call outp.write(). You should be able to determine what parameters to pass to

outp.write().

To test your functions, add code to your main that simply copies an image file, as in the

following example run:

$./ppm_lab ttu.ppm ttu_copy.ppm

$ see ttu_copy.ppm # works on Linux to view the

file in an image viewer

Converting to Grayscale and flipping

Finally, you get to do something interesting with the image. You will write a function to convert

the image into grayscale. Converting an image into grayscale is simple. You will use the

luminosity method, which typically gives good results for most situations. The luminosity

method, as mentioned in the Methodology section above, re-calculates the red, green, and blue

values according to the following formula:

grayval = 0.21 * red + 0.72 * green + 0.07 * blue

The color called grayval is repeated as the red, green, and blue component for that pixel in the

image. Therefore, the algorithm (not c code!) is as follows.

void to_grayscale(RGB_8 *img, int width, int height) {
 for each rgb color value in img (denote as img[i])
 set temp to 0.21 * img[i].r + 0.72 * img[i].g
 + 0.07 * img[i].b
 set img[i].r to temp
 set img[i].g to temp
 set img[i].b to temp
 end for
}

Show that your program works by modifying your main so that it calls to_grayscale() before

it calls PPM_write_header_8() and PPM_write_rgb_8(). Make sure that your code works by

viewing the image (it should be, of course, grayscale).

Next, write a function that will flip the image as if it were being viewed in a mirror. The flip

function has the following prototype.

void flip(RGB_8 *img, int width, int height);

The algorithm is straightforward. You will swap the pixel in the ith position of the row with the

pixel at the (width - i - 1) position in the row. So, you will swap the ith pixel in the row with the

width-1 pixel, the ith+1 pixel with the width-2 pixel, and so on. The algorithm should look like

so:

void flip(RGB_8 *img, int width, int height) {

 for each row in img

 for each rgb color value in row (denote at row[i])

 swap row[i] with row[width-i-1]

 end for

 end for

}

Show that your program works by modifying your main so that it calls flip() after it calls

to_grayscale(), but before it calls PPM_write_header_8() and PPM_write_rgb_8(). Make

sure that your code works by viewing the image (it should be, of course, gray-scale and flipped).

Grayscale and Flip in Parallel
Now for the coup de grace. Processing images can be expensive, especially for very large

images or processing thousands, or even millions, of images. Fortunately, some image

processing can be done in parallel. By using parallel code to modify parts of the image

simultaneously, you can greatly speed up the image processing on machines that have more than

one processor.

Fortunately, writing code to parallelize simple loops in OpenMP, such as the loops in your

to_grayscale() and flip() functions is trivial. All you have to do is add the following

pragma immediately before the for loop in to_grayscale() and the for loop in flip().

#pragma omp parallel for

So, add the pragma, and compile it, adding the following option to your compiler's command

line: -fopenmp

So, What's the Difference?

To see how your code with the added OpenMP pragma makes a difference, download the

ttu_tiled.ppm file at the link provided above (it’s a medium sized file). Next add the following

code before you call your grayscale() function:

// Note that the following code works for g++ on Linux, Mac OS, and Windows

(using MinGW)

struct timeval tv1;

struct timeval tv2;

gettimeofday(&tv1, NULL);

Next, add the following code immediately after your grayscale function:

gettimeofday(&tv2, NULL);

std::cout << "Total time: " << (double) (tv2.tv_usec - tv1.tv_usec) /

1000000 +

 (double) (tv2.tv_sec - tv1.tv_sec) << std::endl;

Now, run the program on the ttu_tile.ppm image and record the time. Next, comment the

OpenMP pragma lines so that the code does not run in parallel. Re-run the program. If the

parallel version does not run faster, try it with larger image sizes.

4.3 Matrix Multiply (CS1) - Parallel Matrix Multiplication Using Java
Skills You Will Learn

• Multiplying matrices

• Partitioning matrices

• Using Java’s ForkJoin methodology

Prolog and Review
For this example, you should review your CS2 material on two dimensional matrices. Matrices

in Java are represented as two dimensional arrays. A two dimensional array is just an array of

arrays. Consider Figure 7. The Matrix is a 2 dimensional, or 2D, array consisting of multiple

rows. Each row is itself an array. Mathematically, you would typically represent a particular

row and column in an array with notation such as m1,3 to indicate the value at row 1 and column

3. However, in Java, you use the bracket operator. In other words, m1,3 is denoted as m[1][3].

Figure 7: A matrix represented as a 2D array.

Most manipulation of 2D arrays require iterating over the values in the array. For example,

consider squaring all the values in a 2D array. The following code shows how the algorithm

might be implemented.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

import java.lang.*;

import java.util.Random;

public class Mat_2d {

 public static final int NUM_ROWS = 5;

 public static final int NUM_COLS = 5;

 public static final double SCALAR = 2.5;

 public static void main(String args[]) {

 double m[][] = new double[NUM_ROWS][NUM_COLS];

 fill_array(m);

 scalar_multiply(m, SCALAR);

 print_array(m);

 }

 public static void fill_array(double m[][]) {

 Random r = new Random();

 for (int i = 0; i < m.length; i++) {

 for (int j = 0; j < m[0].length; j++) {

 m[i][j] = r.nextDouble();

 }

 }

 }

 public static void scalar_multiply(double m[][], double scalar) {

 for (int i = 0; i < m.length; i++) {

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 for (int j = 0; j < m[0].length; j++) {

 m[i][j] *= SCALAR;

 }

 }

 }

 public static void print_array(double m[][]) {

 for (int i = 0; i < m.length; i++) {

 for (int j = 0; j < m[0].length; j++) {

 System.out.printf("%7.2f", m[i][j]);

 }

 System.out.println();

 }

 }

}

In each of the functions fill_array(), scalar_multiply(), and print_array(), a nested for

loop iterates across the array. The outer loop iterates across the rows and the inner loop iterates

across the columns of that particular row. Note how each function uses m.length to determine

the number of rows in the matrix, and m[0].length to determine the number of columns.

Problem Description
For this example, you will be implementing a special case for multiplying two matrices together.

However, before tackling the special case, understanding the generals case is necessary. The

general case matrix multiply computation is a bit more difficult that just multiplying a matrix by

a scalar. As shown in Figure 8, two matrices can only be multiplied together if the first matrix,

denoted as matrix a, has the same number of columns as the number of rows in the second

matrix b. A helpful way to visualize the multiplication is to consider an element of the matrix c,

that is the result matrix, to be the results of multiplying two vectors together. One of the vectors

is a row in matrix a and the other vector is a column in matrix b. The scalar result of multiplying

two vectors together is the sum of the product of the first elements in each of the vectors and the

product of the second elements in each of the vector, and so on. For example, given two vectors

x and y each having three elements, the product of x and y is x0*y0+x1*y1+x2*y2.

The general algorithm for multiplying matrices together requires a triply nested loop. The outer

loop iterates across the columns in a. The first nested loop iterates across the rows in b. The

inner-most loop that accomplishes the vector multiplication of the row in a with the column in b

by multiplying each element in a with the corresponding element in b and accumulating the

results.

Figure 8 Multiplying matrix a by martix b.

Methodology
Figure 9 shows a special case for multiplying matrices. In this case, the matrices are two square

matrices. In other words, the matrices have identical dimensions and the number of elements in

each matrix is a power of two. It is possible to multiply these two matrices using a recursive

algorithm that has the same order notation as the general algorithm, O(n3). Both matrices are

subdivided into eight submatrices with dimensions n/2. We denote the four submatrices derived

from the matrix on the left of the multiplication as A, B, C, and D, and the four submatrices

derived by the matrix on the right as E, F, G, and H. The matrix obtained by multiplying the two

original matrices together can then also be obtained as A*E + B*G (upper left submatrix), A*F +

B*H (upper right), C*E + D*G (lower left), and C*F + B*H (lower right). Thus, we have eight

new matrix multiplications to compute, which we obtain recursively. The base case multiplies

two 1x1 matrices together.

a) Partitioning a square matrix. b) A partially worked example.

Figure 9: First step of recursive Matrix Multiply

How can this algorithm be implemented in parallel? Notice that each quadrant in R could be

computed concurrently. In a recursive solution, the quadrants will be partitioned further,

recursively, and all of those small quadrants can be computed in parallel.

Implementation

Tools

You will need to use the following tools to complete this example:

• An editor.

• The Java 8 SDK

• The following matrix multiply code which you will complete: MatMul.zip4

To implement a parallel matrix multiply using Java ForkJoin framework, you should first start

with a serial recursive version. You will find a serial recursive implementation in the

MatMul.zip file mentioned in the Tools section above.

Recursive Parallel Matrix Multiplication
With Java 8, it is straightforward to convert the serial algorithm into one that automatically uses

multiple processors if available. However, we must identify the part of the algorithm that can

safely be run in parallel. For parallel matrix multiplication, that the eight submatrix

multiplications are performed does not matter. That is, it does not matter if B*G completes

4

http://www.csc.tntech.edu/pdcincs/resources/CS1/matrix_multiply/Java/complete_me.zip

http://www.csc.tntech.edu/pdcincs/resources/CS1/matrix_multiply/Java/complete_me.zip

before A*E, as long as they both complete before the two matrices are added together to

complete the upper left submatrix. You will now parallelize the above matrix multiplication code

by including fork and join at the appropriate spots in the algorithm.

RecursiveTask

First, extend either RecursiveTask<T> or RecursiveAction. This decision is based on whether

the recursive procedure returns a value or not. Our recursive procedure returns the result of a

matrix multiplication, so we use RecursiveTask<Matrix>, as shown in the code below.

package matrix;

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

public class MatrixMultParallel extends RecursiveTask<Matrix>

{

 private Matrix mat_1;

 private Matrix mat_2;

 private int thread_id;

 public MatrixMultParallel(Matrix mat_1, Matrix mat_2, int t_id)

 {

 this.mat_1 = mat_1;

 this.mat_2 = mat_2;

 thread_id = t_id;

 }

 //... the rest of the code, see below

}

Overriding compute()

Next, override the compute()method. This is the method that is automatically called when a new

thread for a task is forked. This can be a bit tricky. You don't really want to start new threads if

the size of the subtask is small, because forking and joining takes time. If you do too much

forking and joining, the serial version can actually run faster! In this case, you only want to

spawn eight threads that correspond to the eight matrix multiplications that occur at the first level

of recursion. The problem size decreases rapidly, and subsequent recursive levels will not have

nearly as much work to do. As shown in the code below, which thread forks is determined by the

thread’s id. Only the top level thread will call the method that creates new threads.

protected Matrix compute()

{

 if (thread_id == 0)

 {

return multiplyRec();

 }

 else

 {

Matrix result = MatrixMultSerial.multiplyRec(mat_1, mat_2);

return result;

 }

}

Fork and Join

To fork a thread, simply create a new instance of the class and call fork. The code in the listing

below creates new threads for the eight smaller matrix multiplications. Afterwards, the code

joins all of these threads, and each join returns the result of the thread because the code is using

RecursiveTask<T>. Forking should be completed before joining. If you join before all subtasks

have been forked, then you are not taking advantage of parallelism. You need to join all of the

results in order to obtain the complete matrix multiplication result, but only after all subtasks

have been forked.

private Matrix multiplyRec()

{

 int mid_row = mat_1.getNumRows()/2;

 int mid_col = mat_1.getNumCols()/2;

 Matrix A = fillHalfMatrix(mat_1, 0, 0);

 Matrix B = fillHalfMatrix(mat_1, 0, mid_col);

 Matrix C = fillHalfMatrix(mat_1, mid_row, 0);

 Matrix D = fillHalfMatrix(mat_1, mid_row, mid_col);

 Matrix E = fillHalfMatrix(mat_2, 0, 0);

 Matrix F = fillHalfMatrix(mat_2, 0, mid_col);

 Matrix G = fillHalfMatrix(mat_2, mid_row, 0);

 Matrix H = fillHalfMatrix(mat_2, mid_row, mid_col);

 //multiplyRec(A, E);

 MatrixMultParallel one = new MatrixMultParallel(A, E, 1);

 one.fork();

 //multiplyRec(A, E);

 MatrixMultParallel two = new MatrixMultParallel(B, G, 2);

 two.fork();

 //multiplyRec(A, E);

 MatrixMultParallel three = new MatrixMultParallel(A, F, 3);

 three.fork();

 //multiplyRec(A, E);

 MatrixMultParallel four = new MatrixMultParallel(B, H, 4);

 four.fork();

 //multiplyRec(A, E);

 MatrixMultParallel five = new MatrixMultParallel(C, E, 5);

 five.fork();

 //multiplyRec(A, E);

 MatrixMultParallel six = new MatrixMultParallel(D, G, 6);

 six.fork();

 //multiplyRec(A, E);

 MatrixMultParallel seven = new MatrixMultParallel(C, F, 7);

 seven.fork();

 //multiplyRec(A, E);

 MatrixMultParallel eight = new MatrixMultParallel(D, H, 8);

 eight.fork();

 Matrix AE = one.join();

 Matrix BG = two.join();

 Matrix AF = three.join();

 Matrix BH = four.join();

 Matrix CE = five.join();

 Matrix DG = six.join();

 Matrix CF = seven.join();

 Matrix DH = eight.join();

 Matrix m1 = AE.add(BG);

 Matrix m2 = AF.add(BH);

 Matrix m3 = CE.add(DG);

 Matrix m4 = CF.add(DH);

 Matrix result = fillFullMatrix(m1, m2, m3, m4);

 return result;

}

ForkJoinPool

Lastly, you need a ForkJoinPool object so that the forked threads can effectively utilize the

available processors. You do not need to create a new object to manage the pool. You can

simply use ForkJoinPool.commonPool() to obtain the required object. You can do this in

MatrixMultDriver class where you will run both the serial and parallel versions, time them, and

compare the results. As shown in the code below, simply create a top level instance of the class

with the left matrix and the right matrix that are to be multiplied together. Then use the

ForkJoinPool object to start up the top level thread with thread id 0. This method call will also

return the final summation because you are using RecursiveTask<T>.

MatrixMultParallel parallel = new MatrixMultParallel(mat_1, mat_2, 0);

System.out.println("starting parallel: ");

long start_time = System.nanoTime();

Matrix mat_3 = ForkJoinPool.commonPool().invoke(parallel);

long stop_time = System.nanoTime();

long time_diff_millis = (stop_time - start_time)/1.E6;

System.out.println(time_diff_millis);

So, What's the Difference?
See if your parallel version is faster than your serial version. If the parallel version does not run

faster, try it with larger matrix sizes.

4.4 Image Processing (CS2) - Gray-scaling and Flipping an Image Using
C++ and OpenMP

Skills you will learn

• Applying multiple image filters

• Functional decomposition via pipelining

• Parallel Processing using OpenMP

Prolog and Review

For this lab, you should review your CS1 material on arrays, structures, and arrays of structures.

You should also review your CS2 course material on queues. The following is a short review.

The queue is a container. In other words, it is used to create items of data much like an

array. However, it exports an interface that is different from the array for manipulating the

contained items. If you want to add items to the queue, you must append the items to the end of

the queue. If you want to get the value of an item in the queue, you must get the value of the

item at the beginning of the queue.

For example, consider the C++ Standard Template Library, or STL, queue. You must include

the following line in your C++ code to use the STL queue.

#include <queue>

Then you can allocate a queue and used the queue's push() method to append an item to the end

of the queue, as in the following example.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

#include <iostream>

#include <queue>

int main() {

 std::cout << "Appending 10 and 20 to the queue..." << std::endl;

 std::queue<int> q;

 q.push(10);

 q.push(20);

 return 0;

12 }

If you want to dequeue an item from the queue to get its value, you must use two methods of the

STL queue: front() and pop(). The STL queue also includes methods for determining if a

queue is empty, determining the queue's size, and other helpful methods. Following is a more

complete example.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <iostream>

#include <queue>

int main () {

 std::queue<int> q;

 int number = 0;

 std::cout << "Please enter some integers (enter 0 to end):\n";

 std::cin >> number;

 while (number != 0) {

 q.push (number);

 std::cin >> number;

 }

 std::cout << "The queue is " << (q.empty() ? "Empty" : "Not Empty")

 << std::endl;

 std::cout << "The size of the queue is " << q.size() << std::endl;

 std::cout << "The queue contains: ";

 while (!q.empty()) {

 std::cout << ' ' << q.front();

 q.pop();

 }

 std::cout << std::endl;

 return 0;

}

Following is what the code prints when it is executed.

$./queue

Please enter some integers (enter 0 to end):

1 2 3 4 5 0

The queue is Not Empty

The size of the queue is 5

The queue contains: 1 2 3 4 5

Problem Description
For this example, you will be writing programs to manipulate images. The two image processing

techniques that you will implement are grey-scaling and flipping an image. Figure 5 from

Example 4.2 shows images that has been gray-scaled, flipped, and then both gray-scaled and

flipped. You should review that section’s description of how images are represented as RGB

triples, and how images are gray-scaled and flipped.

Methodology

You will be implementing an image processing technique called Filtering. Filtering is simply

applying a sequence of operations to an image to achieve a desired outcome. For example, if

you wanted to show an image as if it were depicted as shown in a mirror on an old black-and-

white TV, you would apply the gray-scale and flip filters. Fortunately, for many image filters,

such as gray-scale and flipping, you can accomplish the filtering in parallel and thus reduce the

computation time. One method is pipelining, which is a form of functional

decomposition. Functional decomposition decomposes a problem according to the functions that

are used to accomplish the computations. Functional decomposition is in contrast to domain

decomposition that decomposes a problem according to the input data.

As shown in Figure 10, Pipelining is a form of functional decomposition in which a series of

filters, or functions, manipulates a portion of the input data, and then passes the data onto the

next function, which begins processing the data. However, the first function simultaneously

begins computing of the next portion of input data, so that both functions are computing in

parallel. Note that the technique can be applied to arbitrarily many functions.

Figure 10: Using a pipeline to gray-scale and flip and image.

Notice that in Figure 2, the rectangles are overlapping with the ovals to represent that the gray-

scale function is simultaneously processing image row 3 while flip is processing row 2, which

was previously processed by gray-scale.

So, how do you implement a pipeline? Consider Figure 11. A straightforward way to implement

pipelining is to use a queue to pass data between the functions. When the first function, which is

gray-scale in this example, finishes a row, it passes that row to flip by putting the row in a shared

queue. When the flip function is ready to process the next row, it checks the queue. If the queue

has a row in it, then the flip function removes the row and processes it.

Figure 11: Implementing a pipeline with a queue.

Implementation
For this example, you will be implementing filters to gray-scale and flip an image. You will then

modify your code so that it processes the filters in parallel via a pipeline, thus speeding up the

applications of the functions.

Tools
You will need to use the following tools to complete your assignment:

• An editor.

• A C++ compiler that is OpenMP capable (such as the gnu C++ compiler).

• Some image files with which to work. The following image files are available

online: ttu.ppm5 ttu_tile.ppm6

• A program that can display PPM image files (for example, a browser).

• The following library that contains code to read and write PPM images: libppm.cpp7

and libppm.h8

Preliminaries: Reading and Writing a PPM File
To get started, download the libppm.cpp and libppm.h files above, as well as the ttu.ppm and

ttu_tile.ppm image files. Next, you will make sure that you can compile and run a simple

program that uses the functions in libppm.cpp to read and write PPM files. Create a new file in

your editor called ppm_lab.cpp. Put the following code in ppm_lab.cpp:

5 http://www.csc.tntech.edu/~mrogers/2100/ttu.ppm
6 http://www.csc.tntech.edu/~mrogers/2100/ttu_tile.ppm
7 http://www.csc.tntech.edu/~mrogers/2100/libppm.cpp
8 http://www.csc.tntech.edu/~mrogers/2100/libppm.h

http://www.csc.tntech.edu/~mrogers/2100/ttu.ppm
http://www.csc.tntech.edu/~mrogers/2100/ttu_tile.ppm
http://www.csc.tntech.edu/~mrogers/2100/libppm.cpp
http://www.csc.tntech.edu/~mrogers/2100/libppm.h

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

#include <iostream>

#include <fstream>

#include <stdexcept>

#include <sstream>

#include <sys/time.h>

#include "libppm.h"

int main(int argc, char *argv[]) {

 if (argc != 3) {

 std::cerr << "Usage: " << argv[0] << " in_ppm_file out_ppm_file"

 << std::endl;

 return 1;

 }

 PPM_header img_header;

 try {

 std::ifstream ifs(argv[1], std::ios::binary);

 if (!ifs) {

 throw std::runtime_error("Cannot open input file");

 }

 PPM_read_header(ifs, img_header);

 std::cout << img_header << std::endl;

 RGB_8 *img = new RGB_8[img_header.height * img_header.width];

 PPM_read_rgb_8(ifs, img_header.width, img_header.height,

 (RGB_8 *) img);

 std::ofstream ofs(argv[2], std::ios::binary);

 if (!ofs) {

 throw std::runtime_error("Cannot open output file");

 }

 PPM_write_header_8(ofs, img_header.width, img_header.height);

 PPM_write_rgb_8(ofs, img_header.width, img_header.height,

 (RGB_8 *) img);

 ifs.close();

 ofs.close();

 } catch (std::runtime_error &re) {

 std::cout << re.what() << std::endl;

 return 2;

 }

 return 0;

}

Note that the above code simply reads the image file given as the first parameter on the

command line, and then saves the image to the file given as the second parameter on the

command line.

Gray-scaling and Flipping
Review the material Converting to Grayscale and flipping on page 27 that describes how

to grey-scale and flip images. Implement the serial version for gray-scaling and flipping as

described.

Pipelining

Now, you are going to modify your code so that the image filters will be applied in a

pipeline. Note that once a row of pixels is finished being gray-scaled, the row can be

immediately flipped. Time can be saved by flipping an already gray-scaled row, and, at the same

time, gray-scaling the next row in the image. Unfortunately, you have to modify your code to

take advantage of this parallelism. Fortunately, OpenMP an help.

You will modify your code so that the grayscale() function enqueues the row that it just

finished gray-scaling. Then, you will modify your flip() function by removing the outer for

loop that loops through the rows and replacing it with a call that dequeues the next row to

flip. Using a queue in this way implements a pipeline between the two functions.

So, now for the details. First, declare your queue at the top of your C++ file. The declaration

should look like so:

std::queue<RGB_8 *> pipeline;

Add the following code to your C++ file. This code accomplishes two goals. First, the queue is

a shared resource between the grayscale() function and the flip() function, so it must be

protected from concurrent access (Note the OpenMP critical pragma). Second, the flip()

function can only flip a row when a row is available. Thus the dequeue() function must check

the availability of a row in a loop.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

RGB_8 *dequeue(std::queue<RGB_8 *> &q) {

 RGB_8 *image_row;

 bool keep_checking = true;

 while (keep_checking) {

#pragma omp critical (pipeline)

 {

 if (!pipeline.empty()) {

 image_row = pipeline.front();

 pipeline.pop();

 keep_checking = false;

 }

 }

#pragma omp taskyield

 }

15

16

17

18

19

20

21

22

23

 return image_row;

}

void enqueue(std::queue<RGB_8 *> &q, RGB_8 *row) {

#pragma omp critical (pipeline)

 {

 pipeline.push(row);

 }

}

Next, modify your gray-scale code such that, at the end of processing each row, that row is

enqueued. So the algorithm changes to the following:

void to_grayscale(RGB_8 *img, int width, int height) {

 for each row in img
 for each rgb color value in row (denote as row[i])

 set temp to 0.21 * row[i].r + 0.72 * row[i].g

 + 0.07 * row[i].b

 set row[i].r to temp

 set row[i].g to temp

 set row[i].b to temp

 end for

 enqueue(row)

 end for

 enqueue(0)

}

Note the enqueue(0) at the very end. The sentinel value of 0 is used to signal the flip()

function that no more rows are available.

Next, modify the flip() function. Your flip function should not use an outer for loop to

determine the next row. Instead, it should get the next row from the queue. Following is the

pseudocode:

void flip(int width) {
 do
 set row to dequeue(pipleline)
 if row is not 0
 for each rgb color value in row (denote as row[i])
 swap row[i] with row[width-i-1]
 end for
 end if
 while row is not 0
}

Finally, modify the main so that OpenMP will spawn the functions in two different threads. So,

replace your calls to to_grayscale() and flip() in the main with the following code:

1

2

3

4

5

6

7

8

#pragma omp parallel num_threads(2)

 {

 if (omp_get_thread_num() == 0) {

 to_grayscale(image, width, height); } else {

 flip(width); } }

Note that the above code runs to_grayscale() in the thread with id 0, and the flip() function

in the other thread.

Compile your program. Add the -fopenmp option to your compiler command (for

example: g++ -fopenmp -o ppm_lab ppm_lab.cpp libppm.cpp). Test it to make

sure that it works.

Now, run both the serial version and the parallel version of your on the ttu_tile.ppm image and

compare the timings. Try your code on a larger image if the parallel version is not faster than the

parallel version.

4.5 Parallel Sort (CS2) - Parallel Number Sorting Using C++ and
OpenMP

 Skills you will learn

• Sort numbers in parallel

• Parallel Processing using OpenMP

Prolog and Review
You should review your course CS2 instruction on sorting arrays. Most of the common sorting

algorithms are implemented with nested loops. For example, selection sort, bubble sort, and

insertion sort are all implemented with doubly nested loops. In computer science, such

algorithms are termed as, asymptotically, n-squared algorithms. An n-squared algorithm that has

n input items takes approximately n times n steps to sort the items, in the worst case. Such

algorithms can take a very long time to sort large data sets. So, how can you reduce the sorting

time? You can reduce the sorting time with parallelism, of course!

Problem Description
For this example, you will be writing program to sort numbers stored in an array. You will use

the bubble sort algorithm. The bubble sort algorithm is a pretty simple sort. Consider the Figure

12. The table shows how the bubble sort algorithm make multiple passes over the array. At

each pass, iterates over the array and examines pairs of numbers. The numbers show in white

are numbers that did not have to be swapped because the numbers are already in the correct order

relative to each other. For example, in the first pass and the first iteration, the algorithm

compares the numbers 5.0 and 10.3. The algorithm does not swap the number because 5.0 is less

than 10.3. However, in the second iteration, the algorithm swaps 10.3 and 8.7 because those

number are out of order. Notice that the algorithm stops when no more swaps are needed to

properly order any pair of numbers.

array:

5.0 10.3 8.7 5.0 68.2

Pass Iteration

1 1 5.0 10.3 8.7 5.0 68.2

1 2 5.0 8.7 10.3 5.0 68.2

1 3 5.0 8.7 5.0 10.3 68.2

1 4 5.0 8.7 5.0 10.3 68.2

2 1 5.0 8.7 5.0 10.3 68.2

2 2 5.0 5.0 8.7 10.3 68.2

2 3 5.0 5.0 8.7 10.3 68.2

2 4 5.0 5.0 8.7 10.3 68.2

Figure 12: Sorting integers in an array.

Methodology
You will use domain decomposition, also sometimes called data decomposition, to bubble sort

an array of numbers in parallel. Domain decomposition requires dividing the array into equal

parts and assigning each part to a processor. Consider the simple example in Figure 13. The

figure depicts threads running on three processors, including a thread designated as the master

thread. The computation occurs in two phases. First, the work is divided equally among the

three threads. In this case, each thread sorts four numbers in the array. The master thread sorts

all elements starting at index 0 and ending at index 3, the second thread sorts all elements

starting at index 4 and ending at index 7, and the third thread sorts all elements starting at index 8

and ending at index 11.

The second phase occurs after all of the threads are finished with the first phase. Note that

sorting the pieces of the array does not result in a completely sorted array. In the second phase,

the master must merge sorted pieces to produce a completely sorted result. However, the second

phase must be done serially by a single thread.

Figure 13: Three processors sorting in parallel.

Implementation
For this example, you will be implementing the code to sort numbers in serial and then in

parallel.

Tools

You will need to use the following tools to complete your assignment:

• An editor.

• A C++ compiler that is OpenMP capable (such as the gnu C++ compiler).

Generating Lots of Random Floating Point Numbers

You need lots of numbers to store in the array so that you can sort them. Normally, you would

have some important data, perhaps stored in a file or database, that you need to sort. However,

for this lab, you will generate some data with which to work. Luckily, web sites exist that can

generate the numbers for us. Click on the following link to generate a million

numbers: here9. Save these numbers to a file, and then write a main driver that reads the file into

a single dimension array of integers. Call your C++ program file bsort_serial.cpp.

Sorting the numbers

An example of bubble sorting an array was shown in the Methodology section. You should be

able to implement the bubble sort algorithm in C++. The simplest algorithm is the following.

bsort()
 input:
 array - an array of integers
 num_items - the number of items in the array
 returns:
 nothing
 begin
 loop i from 0 to num_items - 1
 loop j from num_items-1 down to i + 1
 if the array item at j-1 is greater that the array item at j
 swap the array item at j-1 with the array item at j
 end if
 end for
 end for
 end

The above algorithm is a very simple version of the bubble sort algorithm. See if you can

implement a more efficient version.

After you write the bubble sort in C++, add code to your main()that calls the bubble sort

algorithm on the array that after the code has read the numbers from the file. You should test

your code to make sure it works, so you should call the bubble sort function on a small array and

print the results.

Sorting in Parallel
You can you make the serial version faster in the previous step by sorting parts of the array in

parallel and then merging the results, as describe in section Methodology.

Copy the bsort_serial.cpp file to a file named bsort_parallel.cpp. Now, you will modify the

new file to make a parallel version. The Methodology section above showed how the array

9

 https://www.random.org/sequences/?mi0n=1&max=10000000&col=1&format=plain&rn

d=new

https://www.random.org/sequences/?mi0n=1&max=10000000&col=1&format=plain&rnd=new

should be decomposed for each processor in the system to compute a part of the array, and thus

compute the parts in parallel. For this lab, you will decompose the array into two approximately

equal halves, and then have each half sorted by its own thread. In other words, each thread will

call the bsort() function, but will pass the beginning of its half along with the number of items

in its half. Something similar to the following should replace the call to bsort() in your code:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

 int size1 = how_many/2;

 int size2 = how_many-size1;

 #pragma omp parallel num_threads(2)

 {

 if (omp_get_thread_num() == 0) {

 bsort(numbers, size1);

 } else if (omp_get_thread_num() == 1) {

 bsort(numbers + size1, size2);

 }

 }

In the code above, how_many is the total size of the numbers array (the array to be sorted). The

code above stores the size of the first half of the array, i.e. the part that is to be sorted by the first

thread, in the size1 variable. Then, it computes the size of the rest of the array, which is the part

that is to be sorted by the second thread, and stores that size into the size2 variable. Note

that size2 may be one larger than size1. For example, in how_many is 11, then size1 will be 5

and size2 will be 6.

The pragma in the code above executes a fork-join with two threads at line 3. In other words, the

program forks two threads, and each thread executes the code block beginning at line 4 and

ending at line 11. Once both threads finish executing the code block, the threads join and only

the main thread continues after line 11. What does the block of code do? Each thread, executes

the if statement at line 6. The thread with the thread id 0 will call the bsort() function (at line

7) on the first half of the numbers array, and the thread with the thread id 1 will call

the bsort() function (at line 9) on the second half of the numbers array.

Unfortunately, you are not finished. Each part has been sorted, but he entire array is not yet

sorted. You must merge the two halve as explained in the Methodology section

above. Following is a merge algorithm that combines two arrays into a finished result.

merge()
 input:
 a1 - first sorted array
 size1 - the size of the first array
 a2 - second sorted array
 size2 - the size of the second array
 output:
 results - the merged result
 begin
 set idx_a1 to 0
 set idx_a2 to 0
 set result_size to 0
 while idx_a1 <> size1 || idx_a2 <> size2
 // there are more items to merge
 while idx_a1 <> size1 // more items yet unmerged in a1 and ...
 and (idx_a2 = size2 // no items to be merged in a2 ...
 or a1idx_a1 <= a2idx_a2)
 set resultsresult_size equal to a1idx_a1
 add one to result_size
 add one to idx_a1
 end while
 while idx_a2 <> size2 // more items yet unmerged in a2 and ...
 and (idx_a1 = idx1 //no more item to be merged in a1 ...
 or a2idx_a2 <= a1idx_a1)
 set resultsresult_size to a2idx_a2
 add one to result_size
 add one to idx_a2
 end while
 end while
 end

Implement the merge function in your C++ program. Add a call to the merge() function after

the parallel code block. The call should look like the following:

int results[how_many];

merge(numbers, size1, numbers + size1, size2, results);

Finally, test your parallel version of bubble sort to make sure it works.

So, What's the Difference?
To see how your code with the added OpenMP code makes a difference, you can add the

following code before you call bsort() to your main() function in both your serial and parallel

version (before the parallel block in bsort_main_parallel.cpp):

// Note that the following code works for g++ on Linux, Mac OS, and Windows

(using MinGW)

struct timeval tv1;

struct timeval tv2;

gettimeofday(&tv1, NULL);

Next, add the following code immediately after your call the bsort() function in main() for

both the serial and parallel version (after the parallel block in bsort_main_parallel.cpp):

gettimeofday(&tv2, NULL);

std::cout << "Total time: " << (double) (tv2.tv_usec - tv1.tv_usec) /

1000000 +

 (double) (tv2.tv_sec - tv1.tv_sec) << std::endl;

Now, run the serial and the parallel version and compare the timings. If the parallel version is

not faster than the serial version, increase the size of the array until you see a speedup.

4.6 Radix Sort (CS2) - Radix Sort in Parallel (Java)
Skills You Will Learn

• Implementing the Radix Sort algorithm

• Parallelizing the Radix Sort algorithm

Prolog and Review
You are familiar with sorting algorithms that compare elements such as bubble sort, selection

sort, and merge sort. The order notation for an efficient sorting algorithm that compares elements

is O(nlogn). There are sorting algorithms that do not directly compare elements to each other.

One of these is radix sort with an order notation of O(n), although it can have a large coefficient,

as you will see.

Problem Description
This section describes Radix Sort and then describes and alternative recursive algorithm that can

be easily parallelized using Java’s ForkJoin framework.

Radix Sort 1

Suppose you have numerous items stored in an array that you wish to sort using radix sort. The

usual way that radix sort is implemented is to start by examining the last character of the sort

key. For simplicity, let's assume that the sort keys contain only lower case letters and that we

want to sort in ascending order. Based on the ASCII value of the last character of the sort key,

the item with that sort key is placed on a particular queue. Thus, all of the items with the same

last character in their sort key will be placed on the same queue. The items are then removed

from the queues starting with the queue for 'a', then 'b', and so forth. Each queue is completely

emptied before moving on to the next queue. The items are placed back on the array in the order

that they were removed from the queues. Of course, the items are not at all sorted at this point.

Next, the entire process outlined above is repeated for the second to last character, then the third

to last, and so forth. The items will be sorted after the first character in the sort key has been

processed. Thus, even though the algorithm is O(n), there is a coefficient equal to the number of

characters in the sort key, and all of the characters will be examined, even if the first character of

the sort keys are all different. Further, sort keys are rarely all the same length. If an attempt is

made to access a sort key character that is out of range, one can return a special value that will

place that sort key in the very first queue. If two sort keys are identical except for differing

lengths, the shorter sort key will be placed earlier in the sorted array.

Radix Sort 2

It is possible to implement radix sort starting with the first character if recursion is employed, as

shown in Figure 14. Create a single queue and place all of the items to be sorted on it. Call a

procedure that accepts a queue and the index of the current character to be examined as

parameters. The initial call to this procedure will set the current character to 1 for the first

character in the sort key.

The procedure removes items from the incoming queue and places them on to a new set of

initially empty queues by examining the sort key character specified by the current character

parameter. For each of these new queues that contains more than one item (or if a user specified

maximum character is reached), a recursive call is made that increases the current character by

one. In this way, after recursion has completed on one of the new queues, the items in that queue

will be sorted. After any necessary recursion has completed, the items are collected from the

queues, in order, and placed back on the queue that was passed to the procedure.

Figure 14: Radix Sort

This version may appear to be inefficient due to the large number of queues created for each

recursion call. However, because the branching factor is so large, very few recursive levels are

actually required as most of the queues at the second or third recursive level will be empty or

only contain one item (unless there are a lot of nearly duplicate keys). This version is appealing

as it starts with the first character, and, in most cases, does not process that many characters in

the sort key.

Methodology
Using a recursive fork-join algorithm, it is straightforward to convert the above recursive

algorithm into one that automatically uses multiple processors if available. However, we must

identify the part of the algorithm that can safely be run in parallel. For parallel radix sort, the

order in which the set of queues are sorted does not matter. That is, the queue for 'z' can be sorted

before the queue for 'a'. However, emptying the set of queues and placing their contents back on

the incoming queue must be done in order. Thus, only after all of the queues have been forked

should you start to join them. We can fork when making a recursive call on a queue, and we can

join when ready to empty a queue.

Implementation
Tools

• A Text editor

• Java SDK version 8

• The following Radix Sort code that you can complete: RadixSort.zip10

Recursive Parallel Radix Sort

Radixator

Radixator is an interface that simply returns the item's requested sort key character. It is

implemented by the RadixCDTitles class which uses the title of the CD as the sort key. If another

sort key is desired, it is easy to write a new class that implements Radixator in another way.

RecursiveAction

You must extend either RecursiveTask<T> or RecursiveAction. This decision is based on

whether the recursive procedure returns a value or not. Our recursive procedure does not return a

value so we will extend RecursiveAction.

compute()

You will next override the compute() method. This is the method that is automatically called

when a new thread is forked. This can be a little tricky. You do not want to start new parallel

tasks if the size of the subtask is small, because forking and joining can take quite some time. If

you do too much of it, the serial version can actually run faster! In this case, you will only allow

the very first set of queues, those that are sorting based on the first character, to run in parallel. It

is likely that queues working on subsequent characters will not have many items to sort.

Our top level thread will have thread id 0. If you want to restrict forking and joining to the

queues sorting by the first character, then the top level thread is the only thread that will call the

version of binSort() that involves forking and joining each queue in the set. When other

threads call compute(), they will call the RadixSortSerial’s binSort() method which will not

start any new threads. Thus, the compute method will "dispatch" to a sorting method that will

create threads as available for each of the queues in the set if the thread calling compute has

thread id 0.

Fork and Join

The binSort method that will spawn new threads for each of the queues in the set. At most, you

need 37 threads for RadixSort (26 queues for lower case letters, 10 queues for digits, and 1 queue

for spaces). Therefore, you can create an array of type RadixSortParallel with size 37. If a

recursive call is required for a given bin (more than one item in the bin), create a new

RadixSortParallel object, place it in the array of threads, and fork it. In a separate loop, join any

10 http://www.csc.tntech.edu/pdcincs/resources/CS2/radix_sort/Java/code/complete_me.zip

http://www.csc.tntech.edu/pdcincs/resources/CS2/radix_sort/Java/code/complete_me.zip

threads that are not null (remember, some queues did not need any recursion). Then proceed to

empty the bins in order, placing the results back on the incoming queue.

ForkJoinPool

Lastly, you need a ForkJoinPool object so that our forked subtasks can effectively utilize the

available processors. You do not need to create a new object to do this, You can simply call

ForkJoinPool.commonPool() to obtain the required object.

You can make this call in the RadixSortParallel class (in the radixSort() method) where you

run and time the parallel version of the algorithm. Simply create a top level instance of the class

with parameters appropriate for sorting the entire array (and make sure to set the thread_id to

0). Then use the ForkJoinPool object to start up the top level thread. The ForkJoinPool’s

invoke() method will not return anything because we are using RecursiveAction.

The RadixSort.zip file that you can download from the supplied link has an incomplete

implementation of the parallel Radix Sort. Sections of the code that you can complete to create a

working version are in RadixSortParallel and are marked with DO THIS.

4.7 MiniMax (CS2) - TicTacToe MiniMax Search in Parallel Using Java

Skills You Will Learn

• Implementing MiniMax Search

• Parallelizing MiniMax search using the Java ForkJoin framework

• Implementing a TicTacToe game using MiniMax search

Prolog and Review
Review the material in your CS2 course on the tree data structure.

Binary Tree/General Tree

Consider a general binary tree (an unorganized binary tree, not a binary search tree) as shown in

Figure 15. You are familiar with the post-order traversal of a general binary tree where both of

the children (if the node has both a left and a right child) of a particular node are visited before

the node itself is visited. Suppose you wanted to find the largest item stored in the tree. For a

given subtree in the binary tree, you make a recursive call on the left child to get the largest item

in the left subtree and a recursive call on the right child to get the largest item in the right

subtree. The larger of these two items is compared to the item stored in the parent of the subtree

to find the overall largest item in the subtree. The largest item from that subtree is then returned

to its parent for similar tests, and so forth until the largest item is returned from the root node.

Now consider that each node can have any number of children, not just two or fewer as in a

binary tree. This is a general tree, but finding the largest item in this tree is still a postorder

traversal as discussed above. The only difference is that a parent will need to store the pointers to

its children in a list or a similar data structure. Recursive calls are made on all the children,

identifying the largest item amongst them all.

Figure 15: Search tree.

Now suppose the general tree only stores items in the leaves, rather than at each node. This

simplifies the post-order traversal for the largest item as now the traversal simply returns the

largest item amongst the children rather than comparing this item to the item stored at the parent

node as well.

Problem Description
For this example, you will implement a TicTacToe game that utilizes a MiniMax tree to find

optimal moves.

MiniMax Tree

Consider a very simple two player game where "Max" can make one of three possible moves (A,

B, or C) as shown in Figure 16. If Max selects move A, its opponent, "Min", can respond with

three moves of its own (X, Y, Z). After Min takes its turn, the game is over, and the score of the

game can be determined. Max is trying to maximize the score while Min is attempting to

minimize the score. Suppose the results for Min's three possible moves when Max has selected

move A are (9, 5, 11). Thus, if Max selects move A, Min should select move Y to minimize the

opponent's possible score. This is the optimal move for Min to take in this situation. For Max to

find its optimal move, it needs to figure out how Min will respond to each of its possible moves

(A, B, or C) and select the move generating the maximum possible result. This analysis works

when it is Min's turn as well, except that Min will be selecting the smallest value from its

possible moves.

Figure 16: MiniMax tree.

Of course, in selecting its move, Max is assuming that Min will play optimally, which may not

be the case. Thus, in games that have many more turns for each player, Max must recompute its

optimal move every time it is Max's turn to be sure that it is always maximizing its possible

score for the current state of the game which can include suboptimal moves by Min.

A MiniMax Tree is a tree designed to find the optimal move in a two player game such as Tic-

Tac-Toe, Othello, Checkers, etc. Each node in the tree represents a move by Max or Min, the two

players in the game.

Consider a two player game as a general tree where all the possible game scores representing the

different choices that Max and Min can make are stored in the leaves of the tree. If it is Max's

turn to select a move, the optimal move that Max should make is a postorder traversal of the tree

where selecting the maximum of the children or the minimum of the children alternates as you

move through the levels of the tree.

Tic-Tac-Toe MiniMax

The goal is to have a computer playing Tic-Tac-Toe optimally as either X or O. Let's use

the MiniMax Tree scheme to achieve this.

If Max is the Xs player and Min is the Os player, the MiniMax Tree is a general tree where the

root node, an empty 3x3 grid, is Max's turn as Xs go first in Tic-Tac-Toe. The root node has 9

children, and Max must eventually examine all 9 to find its best move. First, Max places an "X"

in the (1,1) location of the grid. Now Min ("O") has eight locations that it can move. This

process of playing the game continues until a leaf is reached and a value is assigned to that leaf,

called a terminal state. Note that the "general tree" is represented by the 3x3 Tic-Tac-Toe

grid being filled up as moves are taken by Max and Min.

With Max as Xs, then the game outcome at the terminal states of the MiniMax Tree is positive if

Max has three Xs in a row, negative if Min has three Os in a row, and 0 if neither Xs nor Os has

three in a row and all 9 spaces of the board are occupied. Further, if Max determines it can win

by traversing the MiniMax Tree, Max should be encouraged to complete its three Xs in a row as

quickly as possible. The value (10 - turn) as the game outcome where turn is the depth of the

MiniMax Tree (that is, how many turns have been taken by both players) will achieve this. For

example, a win by Max in 5 turns is valued as +5 while a win by Max in 9 turns is +1.

As discussed as a postorder traversal, Nonterminal/nonleaf nodes are either selecting the largest

values returned by their children or the smallest, depending on whether it was Xs turn or Os turn

as that node. The selected value is returned to the parent once all children have been analyzed.

Eventually, a result makes it to the root. Now Max ("X") knows that it can win with a move in

the (1,1) location on the grid. However, X may be able to win more quickly in some other

location, so X must still examine all possible places that it can move. Thus, X next tries the (1,2)

location in the grid. This requires that moves be removed from the board once analysis of that

move is completed so that the grid is once again empty for Xs next move analysis. Also,

numerous copies of the board/grid are created so that the branches do not overwrite one another's

selected moves.

Once X knows the best place for its initial move, it sends the move to the Tic-Tac-Toe game, and

that move becomes permanent. Now O takes its turn at the root and finds its best choice, but X

already occupies one spot on the board, so O only has to consider 8 moves. Thus, the computer

player can find its optimal move whether it is playing Xs or Os (or both).

Methodology
Even a simple game like Tic-Tac-Toe can result in an extremely large MiniMax Tree. It is

possible to take advantage of parallelism in a MiniMax Tree traversal to speed up the

computation. A postorder traversal does not care the order in which the children are visited, it

only matters that all children are visited so all of the results can be compared to one another

before the traversal gives the result to the parent.

Thus, when X is deciding on its first move, we can start up several (up to 9) separate threads

(fork) to potentially speed up the speed of the traversal by a factor of 9. These threads will each

take a different amount of time to finish as the depth of the minimax tree depends on the location

of the test move. Therefore, we must wait (join) for all of the threads to finish before returning

the result.

The order that threads finish is output in the console. For the serial case, these values are in

ascending order. For the parallel case, any thread can finish at any time. The sequence will rarely

repeat. It does appear that certain threads generally take longer than others. Why?

Implementation

Tools

• A text editor

• The Java SDK version 8

• The following TicTacToe code that you can complete: MiniMax.zip11

Recursive Parallel MiniMax
With Java 8, it is straightforward to convert the above algorithm into one that automatically uses

multiple processors if available. However, we must identify the part of the algorithm that can

safely be run in parallel. For TicTacToe MiniMax, the order that we examine each spot that max

(or min) can select on their turn does not matter. However, we must wait for the analysis of all of

the possible moves to complete before reporting which one is best. When we allow each possible

move to be processed simultaneously (if processors are available), we refer to this as a fork.

When we wait for the subtasks to complete before reporting the optimal choice, we refer to this

as join. Thus, only after all of the possible move analyses have begun (fork) should we start to

wait for them to complete and compare the results to one another (join).

11 http://www.csc.tntech.edu/pdcincs/resources/CS2/minimax/Java/code/complete_me.zip

http://www.csc.tntech.edu/pdcincs/resources/CS2/minimax/Java/code/complete_me.zip

RecursiveTask<T>

We must extend either RecursiveTask<T> or RecursiveAction. This decision is based on

whether the recursive procedure returns a value or not. Our recursive procedure returns the

"score" (an integer) of the max or min terminal state encountered in that subtree which will be

translated into a tic-tac-toe move (1-9). We will need to extend RecursiveTask<Integer>.

compute()

We next override the compute() method. This is the method that is automatically called when a

new thread is forked. This can be a little tricky. We don't really want to start new parallel tasks if

the size of the subtask is small. This is because forking and joining can take quite some time. If

we do too much of it, the serial version can actually run faster! In our case, we will only fork the

moves being analyzed at the top level. For example, if it is Xs first move, we would ideally like

to have 9 threads analyzing simultaneously all 9 locations that X can select. The amount of

processing required rapidly decreases as we proceed down through the minimax tree, so we

should not start new threads at lower levels in the tree. Note that when it is Os turn, ideally we

would like 8 threads (as X has already selected a location), and so forth.

Our top level thread will have thread id 0 (see later). If we want to restrict forking and joining to

only the top level possible moves for X or O, then compute will only "dispatch" to a method that

involves forking and joining if the thread id is 0. Any other thread calling compute will

"dispatch" to a method that does not spawn new threads. Both method varieties return the "score"

of that location (obtained when a terminal state was reached), and this should be returned.

Fork and Join

The two methods maxForkJoin and minForkJoin are the methods that spawn new threads. At

most, we need 9 threads for TicTacToe (for Xs first move). Therefore, we can create an array of

type TicTacToeMiniMaxParallel with size 9. Then, inside a for loop that loops over each

possible move location, create a new TicTacToeMiniMaxParallel object with the appropriate

parameters, place it in the array of threads, and fork it. In a separate loop, join any threads that

are not null (remember, some locations may have already been selected). As join returns the

score for that location, keep track of the best "score" obtained and its associated location, and

return the optimal location.

ForkJoinPool

Lastly, we need a ForkJoinPool object so that our forked subtasks can effectively utilize the

available processors. We do not need to create a new object to do this, we can simply call

ForkJoinPool.commonPool() to obtain the required object.

We can do this in the TicTacToeMiniMaxParallel class (in the static search method, which is

called by TicTacToe to obtain the optimal move) where we run and time the parallel version of

the algorithm. Simply create a top level instance of the class with appropriate parameters (and

make sure to set the thread_id to 0). Then use the ForkJoinPool object to start up the top level

thread. The ForkJoinPool invoke method will return the optimal move (1-9) since we are using

RecursiveTask<T>. This move is then returned to the TicTacToe game.

You can create a working TicTacToe program by completing the sections in the downloadable

MiniMax.zip file marked DO THIS in the starting source code for TicTacToeMiniMaxParallel.

You will only need to start threads for the root and first level branches in the minimax tree.

Should you extend RecursiveAction or RecursiveTask?

5 Review Questions
1) Describe what a thread is. Describe the relationship between a thread and a process. What is

shared between threads in a process? What is not shared between threads in a process?

2) Describe what a race condition is and give an example. Do not use the example given in the

Chapter.

3) Describe what is meant by fork-join.

4) What OpenMP C++ pragmas discussed in the chapter fork threads? Given an OpenMP

program written in C++, discuss when threads join and give an example.

5) What is a reduction? Describe a situation, other than the examples given in the chapter,

where a reduction would be useful.

6) Why are there rules that must be followed when designing solutions to problems that will use

the ForkJoin Framework?

7) The compute() method that you must override takes no parameters. How do you provide

"parameters" to your solution?

8) Why is it necessary to complete all forks before any joins?

9) Why is "work stealing" important?

10) What is the difference between a RecursiveTask and a RecursiveAction?

11) Why is it important that all of your parallel tasks be independent of one another?

12) Why is it important to determine a problem size that is too small to justify starting new

threads?

6 Programming Exercises
1) CS1/CS2 - Suppose there is an array of n elements which will be processed by p threads in

parallel and p is much less n (p << n). The threads are numbered from 0 through p-1 and the

elements are indexed 0 through n-1. To process the n elements by the threads in parallel we

need to determine how many elements each thread will process and which elements they will

process. A very simple way of doing it is to divide the element as equally in a linear fashion.

If n is not evenly divisible by p then the last thread will process the remaining elements. For

example, if there are 100 elements and 10 threads then each thread will process on 10

elements. Thread 0 process elements 0 through 9, thread 1 will process elements 10 through

19, and so on. Thread 9 process elements 89 to 99. But if there are 99 elements then the

thread 9 will process 9 elements from 89 to 98; or if there are 102 elements thread 9 will

work on 12 elements from 89 – 101. Write the equations/expression in terms of p and n the

range of elements that thread number i will process.

2) CS1 - Suppose an array x contains n integers. The serial algorithm to find the first

occurrence of the maximum value and its location in x can be implemented as

 1

 2

max_value = x[0];

max_location = 0;

 3

 4

 5

 6

 7

 8

 9

10

for (i= 1; i < n; i++)

 {

 if (x[i] > l)

 {

 max_value = x[i];

 max_location = i;

 }

 }

Write a parallel version of the serial algorithm using OpenMP. [Hint:

i. Create two arrays say local_max and local_ max_location to store the maximum

values and their location found by each thread. Set the size of the array to some value

larger than equal to the possible number of thread.

ii. Divide the array among the threads equally. Each thread will find the local maximum

value and its location. The thread can then store it local maximum value and its

location in the shared array. Once all the thread are done finding and storing their

local maximum values and their locations the master thread then can then find the

global maximum from the local maximums using the sequential algorithm.

iii. In the parallel region

1. Determine how many threads are in the team.

2. Determine the work share of each thread i.

3. Determine the beginning and end iteration number for a thread i.

4. Using a for loop find the local maximum and its location for the thread and store the

value in the ith locations in the arrays created in step 1.

5. Find the maximum value from the local_max array and its corresponding location

from the local_max_location array.]

3) CS2 - Write the Matrix Multiply using the parallel for loop and reduction operator in C++

and OpenMP.

4) CS1 - Consider the Parallel Number Summing example in C++ for CS1 given in the chapter.

a) What is the average time for twenty runs of the serial version of the code?

b) What is the average time for twenty runs of the parallel version of the code?

c) Calculate the speedup of the parallel version. Is the parallel code significantly faster?

d) The Methodology section for the parallel sum example described how you decompose the

summation routine to parallelize it. Obviously, OpenMP did all the work for you. How

many elements of the array do you think OpenMP assigned to each processor? Hint: have

your code print the number of threads in the computation (the function

omp_get_thread_num() returns the number of threads).

e) Write a version of the OpenMP code that does not use the OpenMP reduction

pragma. Hint: Before the parallel block, declare a local variable for each thread to hold

the sum. Used the threads id, which you can obtain by using omp_get_thread_num(), to

use the right local variable for the thread. Then, after the parallel block, have the master

thread sum the local variables.

f) The parallel sum example uses reduction in a very simplistic way. Go online and search

for documentation of the OpenMP reduction pragma. Describe its behavior in the general

case.

5) CS1 - Consider the Image processing example in C++ for CS1 given in the chapter.

a) What is the average time for twenty runs of the serial version of the code (i.e. with

pragmas commennted)?

b) What is the average time for twenty runs of the parallel version of the code?

c) Calculate the speedup of the parallel version. Is the parallel code significantly faster?

d) The Methodology section for the image processing example described how you

decompose the image processing routines to parallelize them. Obviously, OpenMP did

all the work for you. How many rows do you think OpenMP assigned to each processor?

Hint: have your code print the image's height, and also have your code print out the

number of threads in the computation (the function omp_get_thread_num() returns the

number of threads).

e) Modify the flip function so that it flips the image vertically instead of horizontally.Hint:

When flipping vertically, you should flip the pixal at offset i with the pixel at offset (h-

(i/w)-1)*w+(i%w), given that the image width is w, and the image's height is h.

6) CS2 - Consider the Image processing example in C++ for CS2 given in the chapter.

a) What is the average time for twenty runs of the serial version of the code (i.e. with

pragmas commennted)?

b) What is the average time for twenty runs of the parallel version of the code?

c) Calculate the speedup of the parallel version. Is the parallel code significantly faster?

d) In the Methodology section for the image processing exercise, pipelining, which is a

method of functional decomposition, is described. Describe how you would implement

the solution using only domain decomposition. Describe how you would implement the

solution using both functional and domain decomposition.

7) CS2 - Consider the Parallel Sort example in C++ for CS2 given in the chapter.

a) What is the average time for twenty runs of the serial version of the code?

b) What is the average time for twenty runs of the parallel version of the code?

c) Calculate the speedup of the parallel version. Is the parallel code significantly faster?

d) In this example, you used only two threads to sort the pieces of the array in

parallel. However, you can use more threads if your computer's processor has more

cores. If you use more threads, describe how the merge algorithm changes.

e) Implement the parallel sort example such that three threads sort the array in parallel.

8) CS1 - Instead of breaking the array into two pieces, modify the Java parallel summation

example to break the array into three pieces. Do you expect better performance? Why or why

not?

9) CS2 - Explain how you could modify the Java Matrix Multiplication example to work on

matrices that are not square and with rows and cols that are not powers of two.

10) CS2 - In the Java Radix Sort example, the compute() method only allowed the top level set of

queues to be processed in parallel. Relax this restriction. Use System.nanoTime() to compare

the new version to the original one. Explain your results.

11) CS2 - An algorithm called alpha-beta pruning is frequently used to increase the speed of

the standard Minimax algorithm. Look it up and explain why it would be difficult to

parallelize.

12) CS1 - Implement a serial, definition based (non-recursive, triply-nested loop) Matrix

Multiplication solution. Use System.nanoTime() to compare it to the parallel Matrix

Multiplication solution for several different (large and small) matrix sizes. Explain your

results. Look up Strassen's algorithm. Modify the parallel Matrix Multiplication to use a

parallel Strassen's algorithm. Compare it to the parallel Matrix Multiplication solution using

System.nanoTime() for large matrices.

13) CS2 - Look up the Eight Puzzle. Solve the eight puzzle using both a serial and a parallel tree-

based search.

