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1. Overview

In recent years, multi-core systems have become ubiquitous in computing. From supercomput-
ers, all the way down to budget laptops and cell phones, leveraging multiple processors has become
the norm for essentially every computing device. With single-core systems becoming a thing of the
past, parallel and distributed programming skills have become more important and relevant than
ever and are only becoming more so. Naturally, this has led to increasing pressure in the academic
space to incorporate and integrate these topics into CS curricula. Traditionally, parallel/distributed
topics have been considered an HPC (High-Performance Computing) topic and were reserved for
higher-level elective courses, being left out of mainstream curricula almost entirely [1]. However,
the landscape is rapidly changing, and the number of jobs requiring knowledge in this area has
increased drastically. For this reason, there has been significant work done in the literature towards
integrating these topics into early CS curricula [2], [3], [4], [S], [6], [7], [8], (1], [9], [10], [11],
[12].

iPDC (Integrating Parallel and Distributed Computing) [13] is an initiative at Tennessee Tech-
nological University aimed at providing education and resources to professors who teach early CS
courses to assist them in integrating parallel and distributed topics into their curricula. Part of the
program is a week-long workshop for professors that includes lectures and hands-on programming
assignments using several different programming languages and tools. One of these is OpenMP.
OpenMP (Open Multi-Processing) is a library for FORTRAN, C, and C++ that provides a high-
level API for parallel, shared-memory programming. The primary advantage of OpenMP is that
it removes responsibility for thread creation and management from the programmer. Instead, the
API consists of abstract, preprocessor level directives and clauses that let the programmer describe
how the code should run and what concurrent dependencies exist without writing the threaded code
themselves. Making parallel code easier to write allows students to focus on the concepts without
being overwhelmed by the difficulty of writing low-level threaded code. This makes OpenMP an
ideal resource for teaching these concepts to early CS students.

Python is now used in roughly one third of universities for teaching early CS courses, which was
the primary motivation behind developing OpenMP for Python. OpenMP for Python is currently a
prototype level software that brings core OpenMP function and behavior to the Python language.
The goal of this project, to this point, was to implement a proof-of-concept demonstrating that
OpenMP could be adapted to the Python syntax and paradigm in a way that is intuitive and usable.
Additionally we wanted to show that parallel concepts (e.g. concurrency, speedup, efficiency, etc.)
could be demonstrated clearly for the purpose of teaching early CS students. While performance

1



is something we care about, in the context of demonstrating the benefits of parallelism, it is not
our goal to provide a real world performance tool. To that end, we have kept the design as simple
as possible in order to quickly realize our proof-of-concept and provide a base that can be further
developed in the future into a robust tool for teaching.

This software currently includes a specific subset of the full OpenMP specification. We have
deliberately selected specific directives, clauses, and runtime functions that represent the core
functionality needed to implement most any parallel algorithm. This subset of the full standard
is sufficient for our needs but can easily be added to in the future if needed. It is important to
note that, while it was our goal for the current implementation to follow the OpenMP standard
as closely as possible, at this time, it is still not “one-to-one” with OpenMP. There are likely still
corner cases where the behavior of our software will differ with OpenMP. We have made an effort
to test each construct during development to catch as many inconsistencies as possible, however, it
will take significant user testing and iterative improvement in the future to fully capture OpenMP
behavior, at least to the degree that it is possible. Additionally, there are some differences between
our software and original OpenMP that are a result of the inherent differences between C-like lan-
guages and Python. This is inevitable given the many paradigmatic incongruencies between these
languages.

This document provides a general overview of the design, architecture, and implementation of
this software. Our goal is to provide background on the technical aspects of the project, explain the
functional design and software architecture, and finally, demonstrate results from our microbench-
marks and cover some of the interesting points regarding them. Finally, the user API will not be
included in this document. Instead, it will be provided in a separate user document. The organiza-
tion of this document is as follows: first, we will cover works related to our project that we learned
and gained insight from, then we will cover some of the Python-specific problems we faced with
the design of this software and how we went about solving them. Next we will give a high-level
architecture overview and explain the software components and how they are organized and work
together. After that, we will go over how the preprocessor transforms the OpenMP code into multi-
threaded Python and give some examples. Finally, We will present two microbenchmarks we used
to test the performance of our solution and briefly discuss the results.

2. Related Work

As far as we are aware, there have only been three attempts in the past to port OpenMP func-
tionality to other languages, all of which have focused on Java as the target language. This project
is the first effort to bring OpenMP to Python. However, we have learned from these other projects
and derive much of our design approach from what worked well with them and what didn’t work.
Therefore, we include them them here, along with a brief summary of each project.

Jomp [14] was the first effort to bring OpenMP functionality to Java. It was based on the first
iteration of the OpenMP specification and therefore implemented only a subset of the full speci-
fication available today. The software consisted of a preprocessor for transforming Jomp code to
standard Java code, as well as a runtime library to implement OpenMP functions. To use Jomp, the
user would write their source code in a .jomp file. The OpenMP directives are added in the form
of single line Java comments. The Jomp preprocessor would then take this file and convert it to the
corresponding thread-based Java code. The Java files must then be compiled using javac in order



to run the program.

Pyjama [15] was a project building on the work from Jomp. Their solution used a similar
approach with a few notable differences. First, Pyjama combined the preprocessor and java com-
pilation into one application, effectively eliminating one step from the process compared to Jomp.
Second, Pyjama added GUI specific directives for releasing the main GUI thread to prevent graph-
ical applications from freezing or becoming unresponsive when doing parallel computation in the
background. Lastly, Jomp was released in the year 2000, 13 years before Pyjama. Jomp was based
on OpenMP 1.0 and Java 1.1, whereas, by the time Pyjama was released, OpenMP 4.0 was already
out along with Java version 7. Out of the three, Pyjama still has the best coverage of the updated
OpenMP specification.

Omp4; [16] is the most recent attempt at bringing OpenMP to Java. It is written in Java and Scala
and works much the same as Pyjama, with one significant difference. Omp4j does not include a
runtime library. The reason for this was to eliminate any extra dependencies. Instead, they use
macros to emulate the function of the omp_get_thread_num () and omp_get _num_threads ()
functions without making an actual function call.

3. Python Obstacles

Early on in the design, we faced several problems that needed to be solved for our proof-of-
concept to be possible. The first was the CPython GIL (Global Interpreter Lock). The GIL makes
it impossible to write truly parallel multi-threaded code by locking the interpreter every time a
thread accesses any shared resource, effectively serializing the code and making it unlikely to gain
any speedup through parallelism. We solve this issue by using Jython for our interpreter. The
Jython interpreter is written in Java and based on the Python 2.7 standard (although some Python
3 features are also incorporated, such as range () ). Jython uses Java threads under the hood and
does not implement a GIL, allowing for truly parallel execution.

Another issue we faced had to do with data structures in Python. Python does not have primitive
arrays like in C. In C, an array is just a pointer to the first item in the array. Python instead has
lists. Lists are objects that wrap data collections and behave similarly to arrays syntactically (e.g.,
allowing bracket notation accesses). The problem is that lists are automatically locked for both
reading and writing, meaning that only one thread can access the list at a time, even if they are
operating at different indices. We found a partial solution for this problem. For parallel data
reading, it is possible to use jarray.array or jarray.zeros. These objects have almost
identical member functions to lists, however, they are implemented differently under the hood
using Java arrays and allow for parallel reading but not writing.

Some of the issues we ran into were the result of differences between Python and C-like lan-
guages, and ultimately came down to design decisions on how we wanted to handle them. For
example, Python has no method for defining an arbitrary scope (which can be done in C by wrap-
ping the code in curly braces, for example: { /*code with new scope*/ }). In C, this is how the
preprocessor knows what code to apply the preceding OpenMP directive to. We solve this problem
by modifying the Python syntax to allow our OpenMP statements (which are given in the form of a
Python comment that our preprocessor can recognize) to come before an indented block, defining
a scope local to that directive. This has the unavoidable effect of breaking compatibility with stan-
dard Python if the code is not transformed by our preprocessor first, since it will appear to have



a normal Python comment followed by an indented block, which is illegal in Python. We made
the deliberate decision to sacrifice compatibility with standard Python interpreters for the sake of
keeping consistent with Python indentation convention and to have the most intuitive mapping
from C OpenMP to Python as possible.

4. Architecture Overview

The basic flow of the application is shown in figure 1. The large, bright blue arrows represent
the flow of the source code through the software. As mentioned before, we use a modified ver-
sion of the Jython interpreter since it does not implement a Global Interpreter Lock like CPython.
Currently, our OpenMP source-to-source preprocessor is written in Python. The reason for this is
that Python was an easy choice early on for quick prototyping and testing Python code transforma-
tion before we had made a commitment in terms of design and project direction. If we had been
sure about our approach using Jython from the beginning, we might have just written the prepro-
cessor in Java in order to have a more seamless integration between interpreter and preprocessor.
Nonetheless, our current, separated approach allows for flexibility in the future if we want to use
our preprocessor with a different interpreter. Additionally, porting our solution to Java would also
be a straightforward task if desired since our parser generator (ANTLR4) can easily be used with
Python or Java.

Since our preprocessor is written in Python, it runs in a separate operating system-level process
than the interpreter. We accomplish this by spawning a subprocess using the Java ProcessBuilder
class. This allows us to start the preprocessor, passing in the fully qualified path to the source code
file as a command line argument to the python process, and finally capturing the output (whether
it be the transformed source code, or an error output).

The preprocessor consists of two main components: the ANTLR lexer/parser (which are au-
tomatically generated by ANTLR from our modified Python grammar file), and the Translator
Visitor. The Translator Visitor traverses the abstract syntax tree produced by the parser and is re-
sponsible for creating the multithreaded code that will run on Jython. The visitor object contains
one visitor function per rule from the grammar that is triggered every time that rule is encountered.
If it is a rule pertaining to regular Python statements, then the visitor simply “prints” the code with
no changes. But if the rule is an OpenMP rule, then the visitor function translates the OpenMP
code to equivalent multithreaded code. How the code is transformed will be covered in more detail
later in the document. At this point, if no errors were generated during the lexing/parsing, the new
source code is printed to stdout, where it is then captured by Jython and written to a temporary file
and executed. In contrast, if an error was generated, only the error is printed and will be displayed
to the user from Jython before exiting with an error status.

Lastly, some of the output code, such as OpenMP for-loops, require runtime calls to be made.
For example, if the schedule is dynamic, then each thread must make a call to request the next
block each time it finishes an assigned block. This is accomplished using the backend runtime,
which is not user-visible. In contrast, the omp runtime contains OpenMP function calls, and is
user visible.
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Figure 1: Architecture Overview

5. Code Transformation

This section gives insight into how the code is transformed from OpenMP blocks to multi-
threaded code and the strategy behind the preprocessor. Below are some examples of the primary
OpenMP constructs and how they are translated into multithreaded code that Jython can run. Note
that some of the “boilerplate” imports and code for setting the correct path have been left out of
the examples for the sake of being concise. Also note that all variables beginning and ending with
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a “_” are variables created by the preprocessor and use this convention to avoid naming collisions
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with user variables. Therefore, we require that user variables not begin and end with a “_”.

5.1. Parallel Construct

A simple example of how a parallel directive is translated is given in Figures 2 & 3. There are
several important things here to note. First, since there is no num_threads () clause given, the
_num_threads_ variable is set to the output of os . cpucount () by default, which in the case of
the computer this was run on, was 8. The parallel region is wrapped in a function, which is passed
to the runtime.submit () function to execute the parallel region with the correct number of
threads. Every parallel target function takes a Runt imeManager object as an argument. The
manager is not needed in this particular example but will be shown in later examples when the
threads need to communicate with each other or share objects. Finally, the way in which we
handle variable scoping for the private and shared clauses are both demonstrated. We use
the global keyword to tell Python we want to use the closure feature to bind the outer varl to the
inner function scope. Next we use the copy-on-write rule of Python to create a new copy of var2
that is local to the function scope and has the initial value of 0.



Figure 2: Parallel Constuct - Original Code

rvarl = 'varl’

svar2 = ’'varz’

s#omp parallel shared(varl) private (var2)
4 print (varl)

5 print (var2)

Figure 3: Parallel Construct - Transformed Code

_num_threads__ 1

»varl = ’'varl’
svar2 = ’'var2’
4_num_threads_ = 8

sdef _target_0 (_manager_):

6 global varl

7 var2 = 0

8 print varl

9 print var2

0_manager_outer_ = RuntimeManager (_num_threads_)

insubmit (_target_0, _num threads_, args=(_manager_outer_,))

5.2. For Construct

Due to the fact that Python only supports for-each loops, we had to enforce some restrictions on
how they can be used with OpenMP for directives. At the parser level, we enforce that the struc-
ture of a for-loop following a for directive must be of the form “for [single variable]
in range([1l, 2, or 3 parameters]) :”. If one parameter (n) is passed to range (),
then the returned range willbe [0, n-1]. If two parameters are passed (k, and n), then the range
will be [k, n-1]. Finally, if three parameters are passed (k, n, and i), then the range will be
[k, k+i, k+2i, k+3i, ..., n-1]. This ensures that OpenMP for-loops will behave as
close to C-like for-loops as possible. Figures 4 & 5 show how an OpenMP for block are trans-
lated inside of a parallel region. The if statement at line 8 ensures that only thread O creates the
for-loop manager object that will partition the work among the threads. The set _for () method
on line 10 makes the manager available to all threads through the shared manager object. Finally,
the structure of the actual for construct is an infinite loop (line 17) that continually requests the
next block to execute until the ForManager object’s done () method returns True (line 23).
The manager dispatches blocks of work according to the schedule (which can be static, dynamic,
or guided). Additionally, the critical directive in the for-loop is implemented by surrounding the
critical section in a lock that all threads have access to through the manager (lines 20-22).



Figure 4: For Constuct - Original Code

rsum = 0

>#omp parallel num_threads (2) shared (sum)
#omp for schedule (dynamic, 5)

4 for i in range (0, 100, 2):

5 fomp critical

6 sum += 1

Figure 5: For Construct - Transformed Code

_num_threads_ = 1

2sum = 0

3_num_threads_ = 2

rdef _target_0 (_manager_) :

5 global sum

6 _schedule_ = ’'dynamic’

7 _chunk_ = 5

8 if omp_get_thread_num() ==

9 _for_manager_ = ForManager (_schedule_, _chunk_, _num_threads_)
10 _manager_.set_for (_for_manager_)

11 else:

12 _for_manager_ = _manager_.get_for ()

13 _argl_ =0

14 _arg2_ = 100

15 _arg3_ = 2

16 _for manager_.setup(_argl_, _arg2_, _arg3_)

17 while True:

18 _start_, _stop_, _step_ = _for_manager_.request ()
19 for i in range(_start_, _stop_, _step_):

20 _manager_.critical_lock.acquire ()
21 sum += 1
2 _manager_.critical_lock.release()

23 if _for_manager_.done(): break
2 _manager_outer_ = RuntimeManager (_num_threads_)
s submit (_target_0, _num_threads_, args=(_manager_outer_,))

pprint sum

5.3. Reduction Construct

Figures 6 & 7 show not only reduction, but also how parallel and for can be com-
bined into a single line with the same effect as if they are separate. The reduction clause
works by first creating a private variable using the copy-on-write rule (line 7) the same as with the
private () clause from the earlier example. At the end of the parallel region, there is a call to
the update_reduction_variable () method of the manager (line 17). This saves a copy of
the last value of the reduction variable for each thread in the manager object. After the parallel
region is executed, the value of the outer version of the reduction variable is updated with a call to
the get_reduction_value () method of the manager, which aggregates the values from each
thread according to the user specified aggregation operation.



Figure 6: Reduction Construct - Original Code

rsum = 0

> #omp parallel for reduction (+:sum)
for i in range (10):

4 sum += 1

sprint (sum)

Figure 7: Reduction Construct - Transformed Code

_num_threads_ =1

2sum = 0

;_num_threads_ = 8

4_schedule_ = None

5_chunk_ = None

sdef _target_0 (_manager_):

7 sum = 0

8 _argl_ = 10

9 _arg2_ = None

10 _arg3_ = None

i _for manager_.setup(_argl_, _arg2_, _arg3_)

12 while True:

13 _start_, _stop_, _step_ = _for_manager_.request ()
14 if _start_ == _stop_: break

15 for i in range(_start_, _stop_, _step_):

16 sum += 1

17 _manager_.update_reduction_variable (’sum’, sum, ’+’)
18s_for_manager_ = ForManager (_schedule_, _chunk_, _num threads_)
19 _manager_ = RuntimeManager (_num_threads_)
20_manager_.set_for (_for_manager_ )

2t submit (_target_0, _num threads_, args=(_manager_,))
»sum = _manager_.get_reduction_value (' sum’)

»nprint sum

6. Benchmarks

To test the performance of our application, we ran two micro-benchmarks featuring simple,
well-known parallel algorithms. Both benchmarks were run on a Windows 10 computer with 6
cores/12 hardware threads and each data point is the average of 20 runs. The first benchmark is
nxn matrix multiplication. The matrices are stored in jarray.array objects and consist of
random integers. We use row-wise partitioning to divide the work. The runtime, speedup, and
efficiency are shown in figures 8, 9, and 10 respectively.

The second micro-benchmark is parallel sum. Again, the integers to be added are stored in a
jarray.array object, which is divided evenly among the threads. The results of this test are
shown in figures 11, 12, and 13.

As mentioned previously, performance and scaling are not the primary goals of this project. We
are not trying to make a tool for performance gains, but one for teaching parallel concepts. That
being said, it is import to demonstrate the effects of parallelism for teaching, even if the results
are suboptimal. The results we have obtained do this, albeit with some interesting, unexpected



outcomes. The most obvious of these is the high speedup at the very beginning followed by a
sharp drop off and then leveling out pattern that we observed across many of the runs. For matrix
multiplication, the runs with 2 and 4 threads saw superlinear speedup at the smallest problem sizes
and the the run with 2 threads for parallel sum did as well. We believe this has to do with the
Just In Time (JIT) compilation in Jython, which adds significant overhead on the first execution to
translate the Python code to Java byte code, which the later runs with more threads don’t have to
do. Additionally, while lower thread counts seem to perform very well in terms of efficiency, there
seems to be quickly diminishing returns as the thread count goes higher. We believe this is because
of the additional overhead of synchronization when writing to the jarray.array objects.

While our results require further investigation and testing to better understand the nuance of
running on Jython and the underlying JVM, our results have met our initial goals of demonstrating
parallelism and speedup. In the future, we plan to continue to refine our testing process to develop
and improve the quality of our software.
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