
OpenMP for Python User Guide

Caleb Huck

June 8th, 2021

1. Introduction
OpenMP (Open Multiprocessing) is a shared-memory, thread-based, parallel library that was

originally written for FORTRAN, C, and C++. OpenMP removes the responsibility for thread
creation and management from the user, allowing them instead to describe how the code should be
run in parallel and what concurrent dependencies exist. This is done through the uses of directives,
clauses, and a runtime library. As far as we are aware, this project is the first effort to bring OpenMP
to Python. Python is a very different language than any of the original supported languages, and
therefore is not a “one-to-one” with the original API. With that in mind, the purpose of this user
guide is to inform the reader on how to use this software and the differences from the original
OpenMP. Therefore we assume prior understand and experience with OpenMP. If you don’t know
OpenMP, or need to brush up before continuing with this document, there are many excellent
online resources, such as Tim Mattson’s A ”Hands-on” Introduction to OpenMP or the Lawrence
Livermore National Laboratory OpenMP Tutorial or any one of many others available.

2. Quick Note About Data Structures
Python lists are implemented as objects that allow array-like syntax, and therefore do not behave

like primitive C arrays. They are automatically locked for both reading and writing, even if reading
or writing to different indices in the list. This means that any parallel program with a significant
amount of shared list access will not see good speedup, if any at all. As a partial workaround
for this problem, we recommend using the jarray.array or jarray.zeros functions. These functions
return an object that wraps an underlying primitive Java array with nearly identical behavior and
member functions to regular lists, and are not locked for reading (unfortunately, writing is still
locked). Their signatures are given below, along with a chart of supported types and an example.
jarray.array(sequence, type)
jarray.zeros(length, type)

1

https://youtu.be/pRtTIW9-Nr0
https://hpc.llnl.gov/training/tutorials/openmp-tutorial
https://hpc.llnl.gov/training/tutorials/openmp-tutorial

Character Typecode Corresponding Java Type
z boolean
c char
b byte
h short
i int
l long
f float
d double
*Python types can also be used, as shown in the example below

1 from jarray import array, zeros
2

3 arr = array([1, 2, 3], ’i’)
4 arr_z = zeros(3, float)
5

6 arr.append(4)
7 for i in range(len(arr_z)):
8 arr_z[i] += 1

1 arr = [1, 2, 3]
2 arr_z = [0.0, 0.0, 0.0]
3

4 arr.append(4)
5 for i in range(len(arr_z)):
6 arr_z[i] += 1

3. Syntax and Usage
This section covers each major OpenMP construct supported, along with the clauses that can

be used in conjunction with them. The function will be briefly explained, along with any major
differences from the original OpenMP version. Note that all directives are in the form of a Python
comment that starts with #omp (we omitted the “pragma” present in the C/C++ OpenMP since it
has no meaning in Python). Syntax examples are also provided.

3.1. Parallel
The parallel directive has the effect of spawning threads to run the subsequent code block

in parallel. It is the only directive that the num threads() clause can be used with. If the
num threads() is not included, then the value returned from os.cpu count() will be used
by default. The parallel directive can also include any variable scoping clause or the reduction
clause.

1 from omp import *
2

3 #omp parallel num_threads(2)
4 id = omp_get_thread_num()
5 print(’Hello from thread: ’, id)

2

3.2. For
The for directive in OpenMP is a convenience directive for for-loop partitioning among threads.

This directive splits the iterations among the available threads according to the schedule set by
the schedule() clause (if not present, it will be set to static, with a chunk size of approx-
imately the number of iterations divided by the number of threads, by default). Dynamic and
guided scheduling is also supported. Because the for-loop construct in Python is really a for-each
loop, we enforce a particular structure when using the for directive. The for-loop following a
for directive must be of the form for [single variable] in range([1, 2, or 3
parameters]):. If one parameter (n) is passed to range(), then the returned range will be
[0, n-1]. If two parameters are passed (k, and n), then the range will be [k, n-1]. Finally,
if three parameters are passed (k, n, and i), then the range will be [k, k+i, k+2i, k+3i,
..., n-1]. This ensures that OpenMP for-loops will behave as close to C-like for-loops as
possible.

1 from omp import *
2

3 #omp parallel num_threads(2)
4 #omp for schedule(dynamic, 5)
5 for i in range(0, 100, 2):
6 print(’Iteration: ’, i’)

3.3. Parallel For
The parallel for directive combines the functions of the previous two directives into a

single directive. It is functionally identical to the parallel directive, directly followed by the
for directive.

1 from omp import *
2

3 #omp parallel for num_threads(2) schedule(guided, 10)
4 for i in range(1, 100):
5 print(’Iteration: ’, i)

3.4. Barrier
The barrier directive is used for synchronization. It ensures that no thread will continue past

the barrier until all threads have made it to the barrier.
1 from omp import *
2

3 #omp parallel
4 print(’first print statement’)
5 #omp barrier
6 print(’All threads have completed first print statement’)

3

3.5. Critical
The critical directive protects critical sections within a parallel region. A critical section is

any code that could result in a race condition if it is executed by multiple threads in parallel. The
critical directive is used to serialize this portion of code so that only one thread may execute
it at a time.

1 from omp import *
2

3 sum = 0
4 #omp parallel for shared(sum)
5 for i in range(10):
6 #omp critical
7 sum += 1

3.6. Reduction
The reduction clause is a convenient method for assigning each thread a private variable,

and then performing some aggregation operation across all of them at the end of the block and
placing the result back in the variable with the same name from the outer scope. This works by
providing a variable name and an operation as arguments to the clause. Then each thread can
access the variable just like a private variable without worrying about synchronization. After the
block executes, the result will automatically be placed into the original variable. The operations
that are supported are as follows: +, -, *, & (bit level AND), | (bit level OR), ˆ (bit level XOR),
&& (logical AND), || (logical OR), max, and min.

1 from omp import *
2

3 sum = 0
4 #omp parallel for reduction(+:sum)
5 for i in range(10):
6 sum += 1

3.7. Master/Single
Currently, the master and single directives have the same effect. These directives ensure

that only the thread with ID 0 will execute the following block. In a future update, we plan to
differentiate between the two by allowing single blocks to be executed by the first thread that
encounters the directive, regardless of whether or not it is thread 0, which is the behavior of the
original OpenMP version.

1 from omp import *
2

3 #omp parallel
4 print(’printed by all threads’)
5 #omp master
6 print(’only printed by thread 0’)
7 #omp single
8 print(’only printed by thread 0’)

4

4. Runtime API
All runtime functions exist in the omp module. The directory where this module exists is added

to the python path automatically, so the user can import it normally. Currently our runtime API
supports three function calls. The first is omp get thread num(). This function returns a
unique ID corresponding to the thread that calls it. The IDs are always assigned starting with 0
(the master thread) and then incrementing by one for each additional thread created. Therefore,
the programmer can assume that whatever threads are available in a given parallel region have IDs
0 through p-1 where p is the number of threads executing the region.

The second function we provide is omp get num threads(). This function returns the num-
ber of available threads executing a parallel region.

Finally, omp get wtime() is a wrapper around the Python time.time function and returns
the number of seconds since some arbitrary time in the past that is guaranteed not to change during
the execution of the program. Below is a table summarizing each API call, along with an example
showing how they can be used.

API Call Description
omp get thread num() returns integer thread ID
omp get num threads() returns integer representing the number of threads ac-

tive in the current scope
omp get wtime() returns the number of seconds since some arbitrary

time in the past

1 from omp import *
2

3 start = omp_get_wtime()
4 #omp parallel num_threads(5)
5 print(’printed by thread ’, omp_get_thread_num(), ’ of ’, \

omp_get_num_threads())
6 end = omp_get_wtime()
7 print(’parallel block took ’, end - start, ’ seconds to finish’)

5

	Introduction
	Quick Note About Data Structures
	Syntax and Usage
	Parallel
	For
	Parallel For
	Barrier
	Critical
	Reduction
	Master/Single

	Runtime API

