
Cache Awareness

Course Level:
CS1/CS2

 PDC Concepts Covered:

PDC Concept Bloom Level
Locality C
False Sharing C

 Programming Knowledge Prerequisites:

• Know how to compile C/C++
• Be able to understand loops and functions

 Tools Required:
For C/C++: A C++ compiler that is OpenMP capable (e.g. the Gnu gcc C++ compiler)

Activity:

Consider the code below. It creates an array of size SIZE*SIZE and then loops over the array setting
each element to zero. The time it takes to loop over the array is measured and printed out. The loop
is implemented with two for loops, each iterating from 0 to SIZE. This lets us think of the array as a
matrix with SIZE rows and SIZE columns. Then i represents the row index and j represents the
column index. The expression i*SIZE+j calculates the actual index in the array. As we can see
from the loops, the matrix is zeroed row by row.

Compile and run the following code in C++:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

#include <iostream>
#include "sys/time.h"

using namespace std;

int main()
{
 const int SIZE = 20000;
 int* array = new int[SIZE*SIZE];
 struct timeval tv1, tv2;

 gettimeofday(&tv1,NULL); //get the current time

 for(int i = 0; i < SIZE; i++)
 for(int j = 0; j < SIZE; j++)

16
17
18
19
20
21
22
23
24
25
26
27

 array[i*SIZE+j]=0;

 gettimeofday(&tv2,NULL);

 //this prints out the time in seconds between
 //the two calls to gettimeofday
 cout << "Time: " << (double)(tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double)(tv2.tv_sec - tv1.tv_sec) << endl;

 delete [] array;
 return 0;
}

What if we want to zero the matrix column by column? This is as simple as swapping the two for
loops. Do this, recompile, and run it. What is going on? Why would simply changing how we loop
over the matrix make it take so much longer?

The cause of this requires us to look at the memory hierarchy. There are three main levels of memory:

• Registers: This is where additions and multiplications take place, fast and small
• Cache: Between Registers and Main Memory, intermediate speed and size
• Main Memory: RAM, large and slow

When the processor requires data it first checks to see if it is in the cache. If it finds the data in the
cache then this is known as a cache hit. If it doesn’t find the data then this is a cache miss and the
processor must go out to main memory to get the data. It can take ten times longer to get the data
on a cache miss than a cache hit.

When the processor gets memory it does not get a single byte. It gets a larger block of memory called
a cache line. This is generally 64 bytes. This is the reason for the large difference in speed between
the two programs.

First consider the row by row program. It loads a cache line of the array from main memory, a cache
miss, and sets the first element to zero. When it goes to set the second element to zero the cache

Registers

Cache

Main Memory

Fast

Slow Big

Small

line is already in the cache, so we get a cache hit. The next few elements will also be cache hits until
we iterate far enough that the elements are in a different cache line.

Now consider the column by column program. The first element results in a cache miss like the row
by row program. However, the next element will also be a cache miss as the elements are not next
to each other in memory. Every single element results in a cache miss when we loop over the
columns.

This is the cause of the performance difference. The row by row program only has to wait on a slow
cache miss every eight or so elements while the column by column program cache misses on every
element.

As programmers, we cannot change how the processor fetches memory, but by changing how we
access our data we can make sure the cache and cache lines help us instead of hurting us.

Now let us see how cache lines might affect parallel programming. Consider the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

#include <iostream>
#include "sys/time.h"
#include "omp.h"

using namespace std;

int main()
{
 const int NUM_THREADS = 1;
 int* array = new int[NUM_THREADS];
 for(int i = 0; i < NUM_THREADS; i++)
 array[i]=0;
 struct timeval tv1, tv2;

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 gettimeofday(&tv1,NULL); //get the current time

 #pragma omp parallel num_threads(NUM_THREADS)
 {
 int index = omp_get_thread_num();
 for(int i = 0; i < 1e9; i++)
 array[index]++;
 }

 gettimeofday(&tv2,NULL);

 //this prints out the time in seconds between
 //the two calls to gettimeofday
 cout << "Time: " << (double)(tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double)(tv2.tv_sec - tv1.tv_sec) << endl;

 delete [] array;
 return 0;
}

There are NUM_THREADS threads that each increments their own int in a loop. Try running the
program with 1, 2, and more threads. The reason for the decrease in performance is once again due
to cache lines. Now this should sound wrong. After all this time array fits on a single cache line.
Shouldn’t this be very good for performance? The problem is that now we are dealing with multiple
threads. The threads will be running on their own cores and each core has its own cache. When the
first thread reads array[0] it loads the cache line into the first processor’s cache. At the same time
the second thread reads array[1] and this loads the same cache line into the second processor’s
cache. At this point there is not a problem. The same cache line can be in two different caches at the
same time. The issue occurs when either thread writes the incremented value back to array. Now
the cache line in the other processor’s cache is wrong. The other processor must now get the updated
cache line from main memory, a cache miss. Now you might think that this is unnecessary in this
instance as the first thread does not care about the second thread’s array value and vise versa.
However, remember that memory transfers work at the cache line level. If thread one kept its cache
line despite thread two updating its value, then when thread one writes the cache line back to main
memory it would overwrite thread two’s value with the old value.

Main Memory

Cache Cache

Registers Registers

This phenomenon is known as false sharing. The way to prevent it is to make sure each thread is
working on different cache lines. To this end consider a modification to our previous code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#include <iostream>
#include "sys/time.h"
#include "omp.h"

using namespace std;

int main()
{
 const int NUM_THREADS = 2;
 const int SPACING = 1;
 int* array = new int[NUM_THREADS*SPACING];
 for(int i = 0; i < NUM_THREADS; i++)
 array[i*SPACING]=0;
 struct timeval tv1, tv2;

 gettimeofday(&tv1,NULL); //get the current time

 #pragma omp parallel num_threads(NUM_THREADS)
 {
 int index = omp_get_thread_num()*SPACING;
 for(int i = 0; i < 1e9; i++)
 array[index]++;
 }

 gettimeofday(&tv2,NULL);

 //this prints out the time in seconds between
 //the two calls to gettimeofday
 cout << "Time: " << (double)(tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double)(tv2.tv_sec - tv1.tv_sec) << endl;

 delete [] array;
 return 0;
}

Now the integers in array do not have to be next to each other. Instead they have indexes that are
a multiple of SPACING. Play around with different SPACING sizes; once it gets big enough the slow
performance should go away as each value is on its own cache line.

